ITU-R REPORT BO 2016-1997 BSS Systems for the 40 5-42 5 GHz Band (7 pp)《40 5-42 5 GHz带的BSS系统》.pdf
《ITU-R REPORT BO 2016-1997 BSS Systems for the 40 5-42 5 GHz Band (7 pp)《40 5-42 5 GHz带的BSS系统》.pdf》由会员分享,可在线阅读,更多相关《ITU-R REPORT BO 2016-1997 BSS Systems for the 40 5-42 5 GHz Band (7 pp)《40 5-42 5 GHz带的BSS系统》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Rep. ITU-R B0.2016 REPORT ITU-R B0.2016 BSS SYSTEMS FOR THE 40.5-42.5 GHz BAND (Question ITU-R 220/11) 1 (1997) 1 Introduction The purpose of this Report is to provide a preliminary assessment of the technical feasibility of using the band 40.5 to 42.5 GHz for applications within the broadcasting sa
2、tellite service (BSS), to which this band is allocated on a worldwide primary basis. Such an assessment is needed because it is commonly assumed that the relatively high propagation losses associated with this band make it more suitable for short-range terrestrial applications than for BSS (see Repo
3、rt ITU-R BT.961). In Europe, European Radiocommunications Committee (ERC) decision, ERC/DEC/(96), 5 June 1996 identifies the 40.5-42.5 GHz band as the harmonized band for multipoint video distribution service (MVDS)*. Moreover, the assumption that the 40.5-42.5 GHz band is not suitable for the BSS h
4、as led others to propose that the companion feeder-link band 47.2-49.2 GHz (see Footnote 901 to the international allocation Table) be used for telecommunication services by means of stratospheric balloons and for uplinks to a global non-geostationary satellite orbit (non-GSO) FSS system. Therefore,
5、 another purpose of this Report is to provide examples of technically feasible 41 GHz BSS downlink and 48 GHz feeder-link parameters for use in analyses of frequency sharing between these links and those of MVDS, stratospheric balloon systems, and other proposed non-BS S and non-feeder link applicat
6、ions. The Report is organized as follows: Section 2 discusses the overall market for satellite broadcasting services and the particular applications for which the EHF frequencies might be suited. Section 3 identifies the existing allocations to the BSS and some of their characteristics. Section 4 th
7、en deals with various aspects of the technical feasibility of BSS systems at 40 GHz, including the availability of the necessary hardware components, examples of link budgets, and the expected levels of link signal availability. Section 5 concludes with suggestions for further work, including some s
8、pecific frequency sharing studies. 2 Demand for BSS services The demand for satellite broadcasting services has grown exponentially during the past decade. The number of households now receiving television programming directly from satellites is on the order of 40 million, located primarily in Weste
9、rn Europe, Japan, and the United States of America. Except in Japan, early growth was largely dependent on the use of satellites designed for the fixed-satellite service (FSS) with downlinks at 11 GHz in Europe and 4 GHz in the United States of America. As elaborated in the next section, however, mo
10、st current and near-future growth is taking place in the planned BSS bands near 12 GHz, and can be expected to include markets in the developing countries of Asia, Latin America, and Africa, as well as further penetration in Europe, the United States of America, Japan, and Australia. In nearly all o
11、f these systems, the satellite coverage areas are national or multi-national in extent. The national and multinational coverage of present and near-future BSS systems might not efficiently accommodate the need for more localized coverage. There remains a broad requirement for services more specifica
12、lly targeted to common interest groups and localities. These services will address the unique national, cultural, educational, and local programming interests of the particular group or locality. In many cases, these services will also need to accommodate strict national and cultural boundary restri
13、ctions or, perhaps, just be limited to the specific interests of a particular locality, e.g., a metropolitan area. “Distance learning” is another rapidly growing service that demands more capacity and better distribution to the end user. Already, instructional television networks (via terrestrial mi
14、crowave and satellites) are being used to provide educational solutions at the university level. * The service is similar to the local multipoint distribution service (LMDS) in the United States of America, for which a domestic allocation near 28 GHz has been established. 2 Rep. ITU-R B0.2016 To ful
15、ly realize the objectives of serving a multitude of localized areas (communities), it is highly desirable that systems operate in the higher frequency bands, i.e., at 30/20 GHz band and above. Although technically possible at the lower frequency bands, use of these higher frequencies provides additi
16、onal spectrum capacity to accommodate the capacity projections of the future. It also enables the use of the high-gain highly directive satellite antenna configurations necessary to achieve local area coverage within a more reasonable physical size simplifying satellite antenna design and deployment
17、. As used here, “local area coverage” is taken to be that roughly necessary to cover a major metropolitan area, or an equivalent antenna pattern “footprint” on the earth about 150 to 300 km in diameter. The physical size of the user terminal antennas can also be commensurately smaller, i.e., on the
18、order of 0.5 m or less. 3 BSS frequency allocations Frequency allocations to the BSS exist in bands near 2, 12, 20, 40, and 85 GHz. Except for the 40 and 85 GHz allocations, which each offer 2 O00 MHz of spectrum in all three ITU-R Regions, the width of the bands and their exact location in the spec
19、trum vary from Region to Region. At present, only the bands near 12 GHz (11.7-12.5 GHz in Region 1, 12.2-12.7 GHz in Region 2, and 11.7-12.2 GHz in Region 3) are used to any great extent, and that use is governed by the frequency assignment plans and associated provisions of Appendix 30 of the Radio
20、 Regulations (RR). Although the number of operating 12 GHz BSS systems is still comparatively small, proposed and planned use is very heavy. Over 175 BSS networks have been proposed by some twenty administrations and two international organizations for implementation as modifications to the BSS Plan
21、 for Regions 1 and 3. Meanwhile, preparations are under way to revise the existing Regions 1 and 3 Plan at WRC-97 by using “new parameters” for unimplemented assignments and for additional assignments to accommodate “new countries”. The BSS allocations at 2 GHz and 20 GHz are respectively unsuited o
22、r currently unavailable for individual reception TV systems. The BSS allocations near 2 GHz are earmarked either for digital sound broadcasting or for community reception TV. The allocations near 20 GHz (21.4 to 22 GHz in Regions 1 and 3, and 17.3 to 17.8 GHz in Region 2) were added at WRC-92 and we
23、re intended for wide-band HDTV. They do not take effect until 1 April 2007. In contrast, no satellite systems have yet been proposed for the BSS allocations in the 40 and 85 GHz bands (40.5-42.5 GHz and 84-86 GHz). The use of these higher frequencies for local-area coverage BSS systems is, however,
24、worthy of consideration. Although the balance of this Report focuses on the 40 GHz band, many of the same considerations are applicable to the 85 GHz band as well. 4 Technical feasibility of a 40-GHz BSS system 4.1 Overall system considerations In this section, it will be argued that the 40 GHz BSS
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURREPORTBO20161997BSSSYSTEMSFORTHE405425GHZBAND7PP405425GHZ BSS 系统 PDF

链接地址:http://www.mydoc123.com/p-792799.html