ITU-R P 681-10-2017 Propagation data required for the design of Earth-space land mobile telecommunication systems.pdf
《ITU-R P 681-10-2017 Propagation data required for the design of Earth-space land mobile telecommunication systems.pdf》由会员分享,可在线阅读,更多相关《ITU-R P 681-10-2017 Propagation data required for the design of Earth-space land mobile telecommunication systems.pdf(61页珍藏版)》请在麦多课文档分享上搜索。
1、 Recommendation ITU-R P.681-10 (12/2017) Propagation data required for the design of Earth-space land mobile telecommunication systems P Series Radiowave propagation ii Rec. ITU-R P.681-10 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economic
2、al use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by Wor
3、ld and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used f
4、or the submission of patent statements and licensing declarations by patent holders are available from http:/www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series
5、 of ITU-R Recommendations (Also available online at http:/www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermin
6、ation, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satell
7、ite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 2017 ITU 2017 All rights reserved. No part of this publica
8、tion may be reproduced, by any means whatsoever, without written permission of ITU. Rec. ITU-R P.681-10 1 RECOMMENDATION ITU-R P.681-10* Propagation data required for the design of Earth-space land mobile telecommunication systems (Question ITU-R 207/3) (1990-1994-1995-1997-1999-2001-2003-2009-2015-
9、2016-2017) Scope This Recommendation predicts the various propagation parameters needed in planning the Earth-space land mobile-satellite service (LMSS). The ITU Radiocommunication Assembly, considering a) that for the proper planning of Earth-space land mobile systems it is necessary to have approp
10、riate propagation data and prediction methods; b) that the methods of Recommendation ITU-R P.618 are recommended for the planning of Earth-space telecommunication systems; c) that further development of prediction methods for specific application to land mobile-satellite systems is required to give
11、adequate accuracy in all regions of the world and for all operational conditions; d) that, however, methods are available which yield sufficient accuracy for many applications, recommends that the methods contained in Annex 1 be adopted for use in the planning of Earth-space land mobile telecommunic
12、ation systems, in addition to the methods recommended in Recommendation ITU-R P.618. Annex 1 1 Introduction Propagation effects in the land mobile-satellite service (LMSS) differ from those of the fixed-satellite service (FSS) primarily because of the greater importance of terrain effects. In the FS
13、S it is generally possible to discriminate against multipath, shadowing and blockage through the use of highly directive antennas placed at unobstructed sites. Therefore, in general, the LMSS offers smaller link availability percentages than the FSS. The prime availability range of interest to syste
14、m designers is usually from 80% to 99%. * This Recommendation should be brought to the attention of Radiocommunication Study Group 4. 2 Rec. ITU-R P.681-10 This Annex deals with data and models specifically needed for predicting propagation impairments in LMSS links, which include tropospheric effec
15、ts, ionospheric effects, multipath, blockage and shadowing. It is based on measurements ranging from 870 MHz in the UHF band up to 20 GHz. 2 Tropospheric effects 2.1 Attenuation Signal losses in the troposphere are caused by atmospheric gases, rain, fog and clouds. Except at low elevation angles, tr
16、opospheric attenuation is negligible at frequencies below about 1 GHz, and is generally small at frequencies up to about 10 GHz. Above 10 GHz, the attenuation can be large for significant percentages of the time on many paths. Prediction methods are available for estimating gaseous absorption (Recom
17、mendation ITU-R P.676) and rain attenuation (Recommendation ITU-R P.618). Fog and cloud attenuation is usually negligible for frequencies up to 10 GHz. 2.2 Scintillation Irregular variations in received signal level and in angle of arrival are caused by both tropospheric turbulence and atmospheric m
18、ultipath. The magnitudes of these effects increase with increasing frequency and decreasing path elevation angle, except that angle-of-arrival fluctuations caused by turbulence are independent of frequency. Antenna beamwidth also affects the magnitude of these scintillations. These effects are obser
19、ved to be at a maximum in the summer season. A prediction method is given in Recommendation ITU-R P.618. 3 Ionospheric effects Ionospheric effects on Earth-to-space paths are addressed in Recommendation ITU-R P.531. Values of ionospheric effects for frequencies in the range of 0.1 to 10 GHz are give
20、n in Tables 1 and 2 of Recommendation ITU-R P.680. 4 Shadowing 4.1 Roadside tree-shadowing model Cumulative fade distribution measurements at 870 MHz, 1.6 GHz and 20 GHz have been used to develop the extended empirical roadside shadowing model. The extent of trees along the roadside is represented b
21、y the percentage of optical shadowing caused by roadside trees at a path elevation angle of 45 in the direction of the signal source. The model is valid when this percentage is in the range of 55% to 75%. 4.1.1 Calculation of fading due to shadowing by roadside trees The following procedure provides
22、 estimates of roadside shadowing for frequencies between 800 MHz and 20 GHz, path elevation angles from 7 up to 60, and percentages of distance travelled from 1% to 80%. The empirical model corresponds to an average propagation condition with the vehicle driving in lanes on both sides of the roadway
23、 (lanes close to and far from the roadside trees are included). The predicted fade distributions apply for highways and rural roads where the overall aspect of the propagation path is, for the most part, orthogonal to the lines of roadside trees and utility poles and it is assumed that the dominant
24、cause of LMSS signal fading is tree canopy shadowing (see Recommendation ITU-R P.833). Rec. ITU-R P.681-10 3 Parameters required are the following: f : frequency (GHz) : path elevation angle to the satellite (degrees) p : percentage of distance travelled over which fade is exceeded. Step 1: Calculat
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURP681102017PROPAGATIONDATAREQUIREDFORTHEDESIGNOFEARTHSPACELANDMOBILETELECOMMUNICATIONSYSTEMSPDF

链接地址:http://www.mydoc123.com/p-792269.html