BS PD IEC TR 62048-2014 Optical fibres Reliability Power law theory《光纤 可靠性 功率定律理论》.pdf
《BS PD IEC TR 62048-2014 Optical fibres Reliability Power law theory《光纤 可靠性 功率定律理论》.pdf》由会员分享,可在线阅读,更多相关《BS PD IEC TR 62048-2014 Optical fibres Reliability Power law theory《光纤 可靠性 功率定律理论》.pdf(70页珍藏版)》请在麦多课文档分享上搜索。
1、BSI Standards Publication Optical fibres Reliability Power law theory PD IEC/TR 62048:2014National foreword This Published Document is the UK implementation of IEC/TR 62048:2014. It supersedes PD IEC/TR 62048:2011 which is withdrawn. The UK participation in its preparation was entrusted by Technical
2、 Committee GEL/86, Fibre optics, to Subcommittee GEL/86/1, Optical fibres and cables. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for
3、its correct application. The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 82512 5 ICS 33.180.10 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards P
4、olicy and Strategy Committee on 28 February 2014. Amendments/corrigenda issued since publication Date Text affected PUBLISHED DOCUMENT PD IEC/TR 62048:2014 IEC TR 62048 Edition 3.0 2014-01 TECHNICAL REPORT Optical fibres Reliability Power law theory INTERNATIONAL ELECTROTECHNICAL COMMISSION XB ICS 3
5、3.180.10 PRICE CODE ISBN 978-2-8322-1369-8 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colour inside PD IEC/TR 62048:2014 2 TR 62048 IEC:2014(E) CONTENTS FOREWORD . 5 INTRODUCTION . 7 1 Sc
6、ope 8 2 Normative references 8 3 Symbols 8 4 General approach 10 5 Formula types 10 6 Measuring parameters for fibre reliability . 11 6.1 Overview 11 6.2 Length and equivalent length . 11 6.3 Reliability parameters 12 6.3.1 Overview 12 6.3.2 Proof-testing . 12 6.3.3 Static fatigue 12 6.3.4 Dynamic f
7、atigue 13 6.4 Parameters for the low-strength region 13 6.4.1 Overview 13 6.4.2 Variable proof test stress 13 6.4.3 Dynamic fatigue 14 6.5 Measured numerical values 17 7 Examples of numerical calculations . 17 7.1 Overview 17 7.2 Failure rate calculations . 18 7.2.1 FIT rate formulae 18 7.2.2 Long l
8、engths in tension . 18 7.2.3 Short lengths in uniform bending 20 7.3 Lifetime calculations 22 7.3.1 Lifetime formulae 22 7.3.2 Long lengths in tension . 22 7.3.3 Short lengths in uniform bending 23 7.3.4 Short lengths with uniform bending and tension 25 8 Fibre weakening and failure . 26 8.1 Crack g
9、rowth and weakening . 26 8.2 Crack fracture 28 8.3 Features of the general results 29 8.4 Stress and strain 30 9 Fatigue testing . 30 9.1 Overview 30 9.2 Static fatigue 30 9.3 Dynamic fatigue . 32 9.3.1 Overview 32 9.3.2 Fatigue to breakage 32 9.3.3 Fatigue to a maximum stress 34 9.4 Comparisons of
10、static and dynamic fatigue 34 9.4.1 Intercepts and parameters obtained 34 9.4.2 Time duration . 34 PD IEC/TR 62048:2014TR 62048 IEC:2014(E) 3 9.4.3 Dynamic and inert strengths . 35 9.4.4 Plot non-linearities 36 9.4.5 Environments 36 10 Proof-testing 37 10.1 Overview 37 10.2 The proof test cycle . 37
11、 10.3 Crack weakening during proof-testing 38 10.4 Minimum strength after proof-testing 39 10.4.1 Overview 39 10.4.2 Fast unloading 39 10.4.3 Slow unloading . 40 10.4.4 Boundary condition . 41 10.5 Varying the proof test stress 41 11 Statistical description of strength by Weibull probability models
12、. 41 11.1 Overview 41 11.2 Strength statistics in uniform tension 41 11.2.1 Unimodal probability distribution . 41 11.2.2 Bimodal probability distribution . 43 11.3 Strength statistics in other geometries . 43 11.3.1 Stress non-uniformity 43 11.3.2 Uniform bending . 44 11.3.3 Two-point bending 45 11
13、.4 Weibull analysis for static fatigue before proof-testing 45 11.5 Weibull analysis for dynamic fatigue before proof-testing . 47 11.6 Weibull distribution after proof-testing 49 11.7 Weibull analysis for static fatigue after proof-testing 51 11.8 Weibull analysis for dynamic fatigue after proof-te
14、sting 53 12 Reliability prediction 54 12.1 Reliability under general stress and constant stress . 54 12.2 Lifetime and failure rate from fatigue testing 55 12.3 Certain survivability after proof-testing . 56 12.4 Failures in time 57 13 B-value: elimination from formulae, and measurements . 58 13.1 O
15、verview 58 13.2 Approximate Weibull distribution after proof-testing . 58 13.2.1 Overview 58 13.2.2 “Risky region“ during proof-testing 58 13.2.3 Other approximations . 59 13.3 Approximate lifetime and failure rate 61 13.4 Estimation of the B-value . 62 13.4.1 Overview 62 13.4.2 Fatigue intercepts .
16、 62 13.4.3 Dynamic fatigue failure stress . 62 13.4.4 Obtaining the strength 62 13.4.5 Stress pulse measurement . 63 13.4.6 Flaw growth measurement 63 PD IEC/TR 62048:2014 4 TR 62048 IEC:2014(E) Annex A (informative) Statistical strength degradation map 64 Bibliography 65 Figure 1 Weibull dynamic fa
17、tigue plot near the proof test stress level . 16 Figure 2 Instantaneous FIT rates of 1 km fibre versus time for applied stress/proof test stress percentages (bottom to top): 10 %, 15 %, 20 %, 25 %, 30 % 19 Figure 3 Averaged FIT rates of 1 km fibre versus time for applied stress/proof test stress per
18、centages (bottom to top): 10 %, 15 %, 20 %, 25 %, 30 % 19 Figure 4 Instantaneous FIT rates of bent fibre with 1 m effective length versus time 21 Figure 5 Averaged FIT rates of bent fibre with 1 m effective length versus time for bend diameters (top to bottom): 10 mm, 20 mm, 30 mm, 40 mm, 50 mm . 21
19、 Figure 6 1 km lifetime versus failure probability for applied stress/proof test stress percentages (top to bottom): 10 %, 15 %, 20 %, 25 %, 30 % . 23 Figure 7 Lifetimes of bent fibre with 1 m effective length versus failure probability for bend diameters (bottom-right to top-left): 10 mm, 20 mm, 30
20、 mm, 40 mm, 50 mm . 24 Figure 8 Static fatigue Applied stress versus time for a particular applied stress . 31 Figure 9 Static fatigue Schematic data of failure time versus applied stress 32 Figure 10 Dynamic fatigue Applied stress versus time for a particular applied stress rate 32 Figure 11 Dynami
21、c fatigue Schematic data of failure time versus applied stress rate 34 Figure 12 Proof-testing Applied stress versus time 38 Figure 13 Static fatigue schematic Weibull plot 47 Figure 14 Dynamic fatigue schematic Weibull plot 48 Figure A.1 Schematic diagram of the statistical strength degradation map
22、 . 64 Table 1 Symbols 8 Table 2 FIT rates of 1 km fibre in Figures 2 and 3 at various times 20 Table 3 FIT rates of 1 metre effective length bent fibre in Figures 4 and 5 at various times 22 Table 4 FIT rates of Table 3 neglecting stress versus strain non-linearity. 22 Table 5 1 km lifetimes in year
23、s of Figure 6 for various failure probabilities . 23 Table 6 Lifetimes of bent fibre with 1 metre effective length in years of Figure 7 for various failure probabilities 24 Table 7 Lifetimes in years of Table 6 neglecting stress versus strain non-linearity . 245 Table 8 Calculated results in case of
24、 bend plus 30 % of proof test tension for 30 years 26 PD IEC/TR 62048:2014TR 62048 IEC:2014(E) 5 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ OPTICAL FIBRES Reliability Power law theory FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization com
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BSPDIECTR620482014OPTICALFIBRESRELIABILITYPOWERLAWTHEORY 光纤 可靠性 功率 定律 理论 PDF

链接地址:http://www.mydoc123.com/p-397689.html