Interactively Optimizing Information Retrieval Systems as a .ppt
《Interactively Optimizing Information Retrieval Systems as a .ppt》由会员分享,可在线阅读,更多相关《Interactively Optimizing Information Retrieval Systems as a .ppt(38页珍藏版)》请在麦多课文档分享上搜索。
1、Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem,ICML 2009Yisong Yue Thorsten Joachims Cornell University,Learning To Rank,Supervised Learning Problem Extension of classification/regression Relatively well understood High applicability in Information RetrievalRequi
2、res explicitly labeled data Expensive to obtain Expert judged labels = search user utility? Doesnt generalize to other search domains.,Our Contribution,Learn from implicit feedback (users clicks) Reduce labeling cost More representative of end user information needsLearn using pairwise comparisons H
3、umans are more adept at making pairwise judgments Via Interleaving Radlinski et al., 2008On-line framework (Dueling Bandits Problem) We leverage users when exploring new retrieval functions Exploration vs exploitation tradeoff (regret),Team-Game Interleaving,1. Kernel Machines http:/svm.first.gmd.de
4、/ 2. Support Vector Machine http:/ 3. An Introduction to Support Vector Machines http:/www.support- 4. Archives of SUPPORT-VECTOR-MACHINES . http:/www.jiscmail.ac.uk/lists/SUPPORT. 5. SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/,1. Kernel Machines http:/svm.first.gmd.de/ 2.
5、SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/ 3. Support Vector Machine and Kernel . References http:/svm.research.bell- 4. Lucent Technologies: SVM demo applet http:/svm.research.bell- 5. Royal Holloway Support Vector Machine http:/svm.dcs.rhbnc.ac.uk,1. Kernel Machines T2 h
6、ttp:/svm.first.gmd.de/ 2. Support Vector Machine T1 http:/ 3. SVM-Light Support Vector Machine T2 http:/ais.gmd.de/thorsten/svm light/ 4. An Introduction to Support Vector Machines T1 http:/www.support- 5. Support Vector Machine and Kernel . References T2 http:/svm.research.bell- 6. Archives of SUPP
7、ORT-VECTOR-MACHINES . T1 http:/www.jiscmail.ac.uk/lists/SUPPORT. 7. Lucent Technologies: SVM demo applet T2 http:/svm.research.bell- r1,f2(u,q) r2,Interleaving(r1,r2),(u=thorsten, q=“svm”),Interpretation: (r2 r1) clicks(T2) clicks(T1),Invariant: For all k, in expectation same number of team members
8、in top k from each team.,NEXT PICK,Radlinski, Kurup, Joachims; CIKM 2008,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy &
9、 independent,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy & independentChoose pair (ft, ft) to minimize regret:(% users
10、 who prefer best bandit over chosen ones),Example 1 P(f* f) = 0.9 P(f* f) = 0.8 Incurred Regret = 0.7Example 2 P(f* f) = 0.7 P(f* f) = 0.6 Incurred Regret = 0.3Example 3 P(f* f) = 0.51 P(f* f) = 0.55 Incurred Regret = 0.06,Modeling Assumptions,Each bandit f 2F has intrinsic value v(f) Never observed
11、 directly Assume v(f) is strictly concave ( unique f* )Comparisons based on v(f) P(f f) = ( v(f) v(f) ) P is L-LipschitzFor example:,Probability Functions,Dueling Bandit Gradient Descent,Maintain ft Compare with ft (close to ft - defined by step size) Update if ft wins comparisonExpectation of updat
12、e close to gradient of P(ft f) Builds on Bandit Gradient Descent Flaxman et al., 2005, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Ba
13、ndit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Curre
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- INTERACTIVELYOPTIMIZINGINFORMATIONRETRIEVALSYSTEMSASAPPT

链接地址:http://www.mydoc123.com/p-376493.html