欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Interactively Optimizing Information Retrieval Systems as a .ppt

    • 资源ID:376493       资源大小:1.61MB        全文页数:38页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Interactively Optimizing Information Retrieval Systems as a .ppt

    1、Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem,ICML 2009Yisong Yue Thorsten Joachims Cornell University,Learning To Rank,Supervised Learning Problem Extension of classification/regression Relatively well understood High applicability in Information RetrievalRequi

    2、res explicitly labeled data Expensive to obtain Expert judged labels = search user utility? Doesnt generalize to other search domains.,Our Contribution,Learn from implicit feedback (users clicks) Reduce labeling cost More representative of end user information needsLearn using pairwise comparisons H

    3、umans are more adept at making pairwise judgments Via Interleaving Radlinski et al., 2008On-line framework (Dueling Bandits Problem) We leverage users when exploring new retrieval functions Exploration vs exploitation tradeoff (regret),Team-Game Interleaving,1. Kernel Machines http:/svm.first.gmd.de

    4、/ 2. Support Vector Machine http:/ 3. An Introduction to Support Vector Machines http:/www.support- 4. Archives of SUPPORT-VECTOR-MACHINES . http:/www.jiscmail.ac.uk/lists/SUPPORT. 5. SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/,1. Kernel Machines http:/svm.first.gmd.de/ 2.

    5、SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/ 3. Support Vector Machine and Kernel . References http:/svm.research.bell- 4. Lucent Technologies: SVM demo applet http:/svm.research.bell- 5. Royal Holloway Support Vector Machine http:/svm.dcs.rhbnc.ac.uk,1. Kernel Machines T2 h

    6、ttp:/svm.first.gmd.de/ 2. Support Vector Machine T1 http:/ 3. SVM-Light Support Vector Machine T2 http:/ais.gmd.de/thorsten/svm light/ 4. An Introduction to Support Vector Machines T1 http:/www.support- 5. Support Vector Machine and Kernel . References T2 http:/svm.research.bell- 6. Archives of SUPP

    7、ORT-VECTOR-MACHINES . T1 http:/www.jiscmail.ac.uk/lists/SUPPORT. 7. Lucent Technologies: SVM demo applet T2 http:/svm.research.bell- r1,f2(u,q) r2,Interleaving(r1,r2),(u=thorsten, q=“svm”),Interpretation: (r2 r1) clicks(T2) clicks(T1),Invariant: For all k, in expectation same number of team members

    8、in top k from each team.,NEXT PICK,Radlinski, Kurup, Joachims; CIKM 2008,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy &

    9、 independent,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy & independentChoose pair (ft, ft) to minimize regret:(% users

    10、 who prefer best bandit over chosen ones),Example 1 P(f* f) = 0.9 P(f* f) = 0.8 Incurred Regret = 0.7Example 2 P(f* f) = 0.7 P(f* f) = 0.6 Incurred Regret = 0.3Example 3 P(f* f) = 0.51 P(f* f) = 0.55 Incurred Regret = 0.06,Modeling Assumptions,Each bandit f 2F has intrinsic value v(f) Never observed

    11、 directly Assume v(f) is strictly concave ( unique f* )Comparisons based on v(f) P(f f) = ( v(f) v(f) ) P is L-LipschitzFor example:,Probability Functions,Dueling Bandit Gradient Descent,Maintain ft Compare with ft (close to ft - defined by step size) Update if ft wins comparisonExpectation of updat

    12、e close to gradient of P(ft f) Builds on Bandit Gradient Descent Flaxman et al., 2005, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Ba

    13、ndit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Curre

    14、nt point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradi

    15、ent Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent,Analysis (Sketch),Dueling Bandit Gradient Descent Se

    16、quence of partially convex functions ct(f) = P(ft f) Random binary updates (expectation close to gradient)Bandit Gradient Descent Flaxman et al., SODA 2005 Sequence of convex functions Use randomized update (expectation close to gradient) Can be extended to our setting,(Assumes more information),Ana

    17、lysis (Sketch),Convex functions satisfyBoth additive and multiplicative error Depends on exploration step size Main analytical contribution: bounding multiplicative error,Regret Bound,Regret grows as O(T3/4):Average regret shrinks as O(T-1/4) In the limit, we do as well as knowing f* in hindsight, =

    18、 O(1/T-1/4 ) = O(1/T-1/2 ),Practical Considerations,Need to set step size parameters Depends on P(f f)Cannot be set optimally We dont know the specifics of P(f f) Algorithm should be robust to parameter settingsSet parameters approximately in experiments,50 dimensional parameter space Value function

    19、 v(x) = -xTx Logistic transfer function Random point has regret almost 1,More experiments in paper.,Web Search Simulation,Leverage web search dataset 1000 Training Queries, 367 DimensionsSimulate “users” issuing queries Value function based on NDCG10 (ranking measure) Use logistic to make probabilis

    20、tic comparisonsUse linear ranking function.Not intended to compete with supervised learning Feasibility check for online learning w/ users Supervised labels difficult to acquire “in the wild”,Chose parameters with best final performance Curves basically identical for validation and test sets (no ove

    21、r-fitting) Sampling multiple queries makes no difference,What Next?,Better simulation environments More realistic user modeling assumptionsDBGD simple and extensible Incorporate pairwise document preferences Deal with ranking discontinuitiesTest on real search systems Varying scales of user communit

    22、ies Sheds on insight / guides future development,Extra Slides,Active vs Passive Learning,Passive Data Collection (offline) Biased by current retrieval functionPoint-wise Evaluation Design retrieval function offline Evaluate onlineActive Learning (online) Automatically propose new rankings to evaluat

    23、e Our approach,Relative vs Absolute Metrics,Our framework based on relative metrics E.g., comparing pairs of results or rankings Relatively recent developmentAbsolute Metrics E.g., absolute click-through rate More common in literature Suffers from presentation bias Less robust to the many different

    24、sources of noise,What Results do Users View/Click?,Joachims et al., TOIS 2007,Analysis (Sketch),Convex functions satisfyWe have both multiplicative and additive error Depends on exploration step size Main technical contribution: bounding multiplicative error,Existing results yields sub-linear bounds

    25、 on:,Analysis (Sketch),We know how to bound Regret:We can show using Lipschitz and symmetry of :,More Simulation Experiments,Logistic transfer function (x) = 1/(1+exp(-x) 4 choices of value functions, set approximately,NDCG,Normalized Discounted Cumulative Gain Multiple Levels of RelevanceDCG: contr

    26、ibution of ith rank position: Ex: has DCG score ofNDCG is normalized DCG best possible ranking as score NDCG = 1,Considerations,NDCG is discontinuous w.r.t. function parameters Try larger values of , Try sampling multiple queries per updateHomogenous user values NDCG10 Not an optimization concern Modeling limitationNot intended to compete with supervised learning Sanity check of feasibility for online learning w/ users,


    注意事项

    本文(Interactively Optimizing Information Retrieval Systems as a .ppt)为本站会员(appealoxygen216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开