【考研类试卷】考研数学二(多元函数微积分)历年真题试卷汇编1及答案解析.doc
《【考研类试卷】考研数学二(多元函数微积分)历年真题试卷汇编1及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学二(多元函数微积分)历年真题试卷汇编1及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(多元函数微积分)历年真题试卷汇编 1 及答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.(2004 年)设函数 f(u)连续,区域 D(,y), 2 y 2 2y,则 (分数:2.00)A.B.C.D.3.(2005 年)设函数 u(,y)(y)(y) -y +y (t)dt,其中函数 具有二阶导数, 具有一阶导数,则必有 【 】(分数:2.00)A.B.C.D.4.(2005 年)设区域 D(,y) 2 y 2 4,0,y0,f()为 D 上的正值连
2、续函数,a,b为常数,则 (分数:2.00)A.abB.C.(ab)D.5.(2006 年)设 f(,y)为连续函数,则 (分数:2.00)A.B.C.D.6.(2006 年)设 f(,y)与 (,y)均为可微函数,且 y (,y)0已知( 0 ,y 0 )是f(,y)在约束条件 (,y)0 下的一个极值点,下列选项正确的是 【 】(分数:2.00)A.若 f ( 0 ,y 0 )0,则 f y ( 0 ,y 0 )0B.若 f ( 0 ,y 0 )0,则 f y ( 0 ,y 0 )0C.若 f ( 0 ,y 0 )0,则 f y ( 0 ,y 0 )0D.若 f ( 0 ,y 0 )0,则
3、 f y ( 0 ,y 0 )07.(2007 年)二元函数 f(,y)在点(0,0)处可微的一个充分条件是 【 】(分数:2.00)A.f(,y)f(0,0)0B.C.D.8.(2007 年)设函数 f(,y)连续,则二次积分 (分数:2.00)A.B.C.D.9.(2008 年)设函数 f 连续,若 F(u,v) ddy,其中区域 D uv 为图中阴影部分,则 _ (分数:2.00)A.vf(u 2 )B.C.vf(u)D.f(u)10.(2009 年)设函数 zf(,y)的全微分为 dzdydy,则点(0,0) 【 】(分数:2.00)A.不是 f(,y)的连续点B.不是 f(,y)的极
4、值点C.是 f(,y)的极大值点D.是 f(,y)的极小值点11.(2009 年)设函数 f(,y)连续,则 1 2 d 2 f(,y)dy 1 2 dy y 4-y f(,y)d 【 】(分数:2.00)A. 1 2 d 1 4- f(,y)dyB. 1 2 d 4- f(,y)dyC. 1 2 dy 1 4-y f(,y)dD. 1 2 dy y 2 f(,y)d二、填空题(总题数:4,分数:8.00)12.(2004 年)设函数 zz(,y)由方程 ze 23z 2y 确定,则 3 (分数:2.00)填空项 1:_13.(2007 年)设 f(u,v)是二元可傲函数,zf( ),则 (分
5、数:2.00)填空项 1:_14.(2008 年)设 z ,则 (分数:2.00)填空项 1:_15.(2012 年)设 zs(ln ),其中函数 f(u)可微,则 (分数:2.00)填空项 1:_三、解答题(总题数:12,分数:24.00)16.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_17.(2004 年)设 zf( 2 y 2 ,e y ),其中 f 具有连续二阶偏导数,求 (分数:2.00)_18.(2005 年)已知函数 f(,y)的全微分 d2d2ydy,并且 f(1,1)2求 f(,y)在椭圆域 D(,y) 2 (分数:2.00)_19.(2005 年)计
6、算二重积 (分数:2.00)_20.(2006 年)设区域 D(,y) 2 y 2 1,0,计算二重积分 I (分数:2.00)_21.(2006 年)设函数 f(u)在(0,)内具有二阶导数,且 zf( )满足等式 ()验证 f(u) (分数:2.00)_22.(2007 年)已知函数 f(u)具有二阶导数,且 f(0)1,函数 yy()由方程 ye y-1 1 所确定设 zf(lnysin),求 (分数:2.00)_23.(2007 年)设二元函数 计算二重积 (分数:2.00)_24.(2008 年)求函数 u 2 y 2 z 2 在约束条件 z 2 y 2 和 yz4 下的最大值小值。
7、(分数:2.00)_25.(2008 年)计算 (分数:2.00)_26.(2009 年)设 zf(y,y,y),其中,具有二阶连续偏导数,求 dz 与 (分数:2.00)_27.(2009 年)计算二重积 (分数:2.00)_考研数学二(多元函数微积分)历年真题试卷汇编 1 答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.(2004 年)设函数 f(u)连续,区域 D(,y), 2 y 2 2y,则 (分数:2.00)A.B.C.D. 解析:解析:将圆 2
8、 y 2 2y 改写为极坐标方程为 r2sin则 3.(2005 年)设函数 u(,y)(y)(y) -y +y (t)dt,其中函数 具有二阶导数, 具有一阶导数,则必有 【 】(分数:2.00)A.B. C.D.解析:解析:4.(2005 年)设区域 D(,y) 2 y 2 4,0,y0,f()为 D 上的正值连续函数,a,b为常数,则 (分数:2.00)A.abB.C.(ab)D. 解析:解析:由于积分域 D 关于直线 y 对称,则5.(2006 年)设 f(,y)为连续函数,则 (分数:2.00)A.B.C. D.解析:解析:由积分 f(rcos,rsin)rdr 知其积分域如图所示,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 多元 函数 微积分 历年 汇编 答案 解析 DOC
