【考研类试卷】考研数学三(线性代数)-试卷15及答案解析.doc
《【考研类试卷】考研数学三(线性代数)-试卷15及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)-试卷15及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)-试卷 15 及答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 为 3 阶非零矩阵,且满足 a ij =A ij (i,j=1,2,3),其中 A ij 为 a ij 的代数余子式,则下列结论: A 是可逆矩阵;A 是对称矩阵;A 是不可逆矩阵;A 是正交矩阵 其中正确的个数为 ( )(分数:2.00)A.1B.2C.3D.43.设 A,B 均为 n 阶矩阵,且 AB=A+B,则下列命题中:若 A 可逆,则 B 可逆; 若 A+B 可
2、逆,则 B 可逆;若 B 可逆,则 A+B 可逆; AE 恒可逆正确的个数为 ( )(分数:2.00)A.1B.2C.3D.44.已知 Q= (分数:2.00)A.t=6 时 P 的秩必为 1B.t=6 时 P 的秩必为 2C.t6 时 P 的秩必为 1D.t6 时 P 的秩必为 25.设 n 阶矩阵 A,B 等价,则下列说法中,不一定成立的是 ( )(分数:2.00)A.若A0,则B0B.如果 A 可逆,则存在可逆矩阵 P,使得 PB=EC.如果 AE,则B0D.存在可逆矩阵 P 与 Q,使得 PAQ=B6.设 A= (分数:2.00)A.1B.3C.1 或 3D.无法确定7.设 (分数:2
3、.00)A.AP 1 P 2 =BB.AP 2 P 1 =BC.P 1 P 2 A=BD.P 2 P 1 A=B8.设 (分数:2.00)A.A 1 P 1 P 2B.P 1 A 1 P 2C.P 1 P 2 A 1D.P 2 A 1 P 19.设 A 是 n 阶矩阵,则 (分数:2.00)A.(2) n A nB.(4A) nC.(2) 2n A * nD.4A n10.设 ,则(P 1 ) 2016 A(Q 2011 ) 1 = ( ) (分数:2.00)A.B.C.D.二、填空题(总题数:6,分数:12.00)11.已知 A 2 2A+E=O,则(A+E) 1 = 1(分数:2.00)填
4、空项 1:_12.设 A 是 n 阶矩阵,A=5,则(2A) * = 1(分数:2.00)填空项 1:_13.设 A= (分数:2.00)填空项 1:_14.设 A= (分数:2.00)填空项 1:_15.已知 A,B 均是 3 阶矩阵,将 A 中第 3 行的2 倍加到第 2 行得矩阵 A 1 ,将 B 中第 1 列和第 2 列对换得到 B 1 ,又 A 1 B 1 = (分数:2.00)填空项 1:_16.设 B= (分数:2.00)填空项 1:_三、解答题(总题数:16,分数:32.00)17.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_18.证明:方阵 A 是正交矩
5、阵,即 AA T =E 的充分必要条件是:(1)A 的列向量组组成标准正交向量组,即 或(2)A 的行向量组组成标准正交向量组,即 (分数:2.00)_19.证明:n3 的非零实方阵 A,若它的每个元素等于自己的代数余子式,则 A 是正交矩阵(分数:2.00)_20.证明:方阵 A 是正交矩阵的充分必要条件是A=1,且若A=1,则它的每一个元素等于自己的代数余子式;若A=1,则它的每个元素等于自己的代数余子式乘1(分数:2.00)_21.设 =a 1 ,a 2 ,a n T ,=b 1 ,b 2 ,b n T 0,且 T =0,A=E+ T ,试计算: (1)A;(2)A n ;(3)A 1
6、(分数:2.00)_22.设 A 是主对角元为 0 的四阶实对称阵,E 是 4 阶单位阵,B= (分数:2.00)_23.设 (分数:2.00)_24.A,B 均是 n 阶矩阵,且 AB=A+B证明:AE 可逆,并求(AE) 1 (分数:2.00)_25.设 B 是可逆阵,A 和 B 同阶,且满足 A 2 +AB+B 2 =O证明:A 和 A+B 都是可逆阵,并求 A 1 和(A+B) 1 (分数:2.00)_26.已知 A,B 是三阶方阵,AO,AB=O证明:B 不可逆(分数:2.00)_27.设 A=(a ij ) nn ,且 (分数:2.00)_28.已知 n 阶矩阵 求A中元素的代数余
7、子式之和 ,第 i 行元素的代数余子式之和 ,i=1,2,n 及主对角元的代数余子式之和 (分数:2.00)_29.设矩阵 A 的伴随矩阵 A * = (分数:2.00)_30.设 A 是 n 阶可逆阵,将 A 的第 i 行和第 j 行对换得到的矩阵记为 B证明:B 可逆,并推导 A 1 和 B 1 的关系(分数:2.00)_31.设 A 是 n 阶可逆阵,其每行元素之和都等于常数 a证明:(1)a0;(2)A 1 的每行元素之和均为 (分数:2.00)_32.(1)A,B 为 n 阶方阵证明: (2)计算 (分数:2.00)_考研数学三(线性代数)-试卷 15 答案解析(总分:64.00,做
8、题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A 为 3 阶非零矩阵,且满足 a ij =A ij (i,j=1,2,3),其中 A ij 为 a ij 的代数余子式,则下列结论: A 是可逆矩阵;A 是对称矩阵;A 是不可逆矩阵;A 是正交矩阵 其中正确的个数为 ( )(分数:2.00)A.1B.2 C.3D.4解析:解析:由 a ij =A ij (i,j=1,2,3)及伴随矩阵的定义可知:A * =A T ,那么A * =A T ,也即A 2 =A,即A(A1)=0 又由于
9、A 为非零矩阵,不妨设 a 11 =0,则 A=a 11 A 11 +a 12 A 12 +a 13 A 13 =a 11 2 +a 12 2 +a 13 2 0, 故A=1因此,A 可逆 并且 AA T =AA * =AE=E,可知 A 是正交矩阵可知、正确,错误 从题目中的条件无法判断 A 是否为对称矩阵,故正确的只有两个,选(B)3.设 A,B 均为 n 阶矩阵,且 AB=A+B,则下列命题中:若 A 可逆,则 B 可逆; 若 A+B 可逆,则 B 可逆;若 B 可逆,则 A+B 可逆; AE 恒可逆正确的个数为 ( )(分数:2.00)A.1B.2C.3D.4 解析:解析:由于(AE)
10、B=A,可知当 A 可逆时,AEB0,故B0,因此 B 可逆,可知是正确的 当 A+B 可逆时,AB=AB0,故B0,因此 B 可逆,可知是正确的 类似地,当 B 可逆时,A 可逆,故AB=AB0,因此 AB 可逆,故 A+B 也可逆,可知是正确的 最后,由 AB=A+B 可知(AE)BA=O,也即(AE)B(AE)=E,进一步有(AE)(BE)=E,故 AE 恒可逆可知也是正确的 综上,4 个命题都是正确的,故选(D)4.已知 Q= (分数:2.00)A.t=6 时 P 的秩必为 1B.t=6 时 P 的秩必为 2C.t6 时 P 的秩必为 1 D.t6 时 P 的秩必为 2解析:解析:“A
11、B=O”是考研出题频率极高的考点,其基本结论为: A ms B sn =O=r(A)+r(B)s; A ms B sn =O=组成 B 的每一列都是 A ms X=0 的解向量 对于本题, PQ=O=r(P)+r(Q)3=1r(P)3r(Q) 当 t=6 时,r(Q)=1=1r(P)2=r(P)=1 或 2,则(A)和(B)都错; 当 t6 时,r(Q)=2=lr(P)1=r(P)=15.设 n 阶矩阵 A,B 等价,则下列说法中,不一定成立的是 ( )(分数:2.00)A.若A0,则B0 B.如果 A 可逆,则存在可逆矩阵 P,使得 PB=EC.如果 AE,则B0D.存在可逆矩阵 P 与 Q
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 15 答案 解析 DOC
