【考研类试卷】考研数学一(线性代数)-试卷39及答案解析.doc
《【考研类试卷】考研数学一(线性代数)-试卷39及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(线性代数)-试卷39及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)-试卷 39 及答案解析(总分:70.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 是 n 阶矩阵,下列结论正确的是( )(分数:2.00)A.A,B 都不可逆的充分必要条件是 AB 不可逆B.r(A)n,r(B)n 的充分必要条件是 r(AB)nC.AX=0 与 BX=0 同解的充分必要条件是 r(A)=r(B)D.AB 的充分必要条件是 EAE 一 B3.设 A 为 n 阶可逆矩阵, 为 A 的特征值,则 A * 的一个特征值为( )(分数:2.00)
2、A.B.C.|A|D.|A| n14.设三阶矩阵 A 的特征值为 2 =一 1, 2 =0, 3 =1,则下列结论不正确的是( )(分数:2.00)A.矩阵 A 不可逆B.矩阵 A 的迹为零C.特征值一 1,1 对应的特征向量正交D.方程组 AX=0 的基础解系含有一个线性无关的解向量5.设 A 为三阶矩阵,方程组 AX=0 的基础解系为 1 , 2 ,又 =一 2 为 A 的一个特征值,其对应的特征向量为 3 ,下列向量中是 A 的特征向量的是( )(分数:2.00)A. 1 + 3B.3 3 一 1C. 1 +2 2 +3 3D.2 1 3 26.设 A 为 n 阶实对称矩阵,下列结论不正
3、确的是( )(分数:2.00)A.矩阵 A 与单位矩阵 E 合同B.矩阵 A 的特征值都是实数C.存在可逆矩阵 P,使 PAP 1 为对角阵D.存在正交阵 Q,使 Q T AQ 为对角阵7.设 n 阶矩阵 A 与对角矩阵相似,则( )(分数:2.00)A.A 的 n 个特征值都是单值B.A 是可逆矩阵C.A 存在 n 个线性无关的特征向量D.A 一定为 n 阶实对称矩阵8.设 , 为四维非零列向量,且 ,令 A= T ,则 A 的线性无关特征向量个数为( )(分数:2.00)A.1B.2C.3D.49.设 A,B 为正定矩阵,C 是可逆矩阵,下列矩阵不是正定矩阵的是( )(分数:2.00)A.
4、C T ACB.A 1 +B 1C.A * +B *D.AB二、填空题(总题数:7,分数:14.00)10.设 A 是三阶矩阵,其三个特征值为一 (分数:2.00)填空项 1:_11.设 = (分数:2.00)填空项 1:_填空项 1:_12.已知 A= (分数:2.00)填空项 1:_13.设 A 为三阶实对称矩阵,且 1 = (分数:2.00)填空项 1:_14.设 AB,其中 A= (分数:2.00)填空项 1:_填空项 1:_15.设 A 是三阶实对称矩阵,其特征值为 =3, 2 = 3 =5,且 1 =3 对应的线性无关的特征向量为 1 = (分数:2.00)填空项 1:_16.设
5、, 为三维非零列向量,(,)=3,A= T ,则 A 的特征值为 1(分数:2.00)填空项 1:_三、解答题(总题数:19,分数:38.00)17.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_18.设 A= (分数:2.00)_19.设 A= (分数:2.00)_20.设 A= (分数:2.00)_21.设 A= (分数:2.00)_22.设 A T A=E,证明:A 的实特征值的绝对值为 1(分数:2.00)_23.设 为 A 的特征值 (1)证明:A T 与 A 特征值相等; (2)求 A 2 ,A 2 +2A+3E 的特征值; (3)若|A|0,求 A 1 ,A
6、* ,EA 1 的特征值(分数:2.00)_24.设 X 1 ,X 2 分别为 A 的属于不同特征值 1 , 2 的特征向量证明:X 1 +X 2 不是 A 的特征向量(分数:2.00)_25.= (分数:2.00)_26.设向量 =(a 1 ,a 2 ,a n ) T ,其中 a 1 0,A= T (1)求方程组 AX=0 的通解; (2)求 A 的非零特征值及其对应的线性无关的特征向量(分数:2.00)_27.设 = (分数:2.00)_28.设 A 为三阶矩阵,A 的特征值为 1 =1, 2 =2, 3 =3,其对应的线性无关的特征向量分别为 1 = (分数:2.00)_29.设 A 是
7、 n 阶矩阵, 是 A 的特征值,其对应的特征向量为 X,证明: 2 是 A 2 的特征值,X 为特征向量若 A 2 有特征值 ,其对应的特征向量为 X,X 是否一定为 A 的特征向量?说明理由(分数:2.00)_30.设 A,B 为 n 阶矩阵 (1)是否有 ABBA; (2)若 A 有特征值 1,2,n,证明:ABBA(分数:2.00)_31.设 为 n 维非零列向量,A=E (分数:2.00)_32.设矩阵 A= (分数:2.00)_33.设 A 是三阶实对称矩阵,r(A)=1,A 2 一 3A=O,设(1,1,一 1) T 为 A 的非零特征值对应的特征向量 (1)求 A 的特征值;
8、(2)求矩阵 A(分数:2.00)_34.设三阶实对称矩阵 A 的特征值为 1 =8, 2 = 3 =2,矩阵 A 的属于特征值 1 =8 的特征向量为 1 = (分数:2.00)_35.设 n 阶矩阵 A 满足(aEA)(bEA)=O 且 ab证明:A 可对角化(分数:2.00)_考研数学一(线性代数)-试卷 39 答案解析(总分:70.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A 是 n 阶矩阵,下列结论正确的是( )(分数:2.00)A.A,B 都不可逆的充分必要条
9、件是 AB 不可逆B.r(A)n,r(B)n 的充分必要条件是 r(AB)nC.AX=0 与 BX=0 同解的充分必要条件是 r(A)=r(B)D.AB 的充分必要条件是 EAE 一 B 解析:解析:若 AB,则存在可逆矩阵 P,使得 P 1 AP=B, 于是 P 1 (E 一 A)P=E 一 P 1 AP=E一 B,即 E 一 AE 一 B; 反之,若 E 一 AE 一 B,即存在可逆矩阵 P,使得 P 1 (EA)P=E 一 B, 整理得 E 一 P 1 AP=E 一 B,即 P 1 AP=B,即 AB,应选(D)3.设 A 为 n 阶可逆矩阵, 为 A 的特征值,则 A * 的一个特征值
10、为( )(分数:2.00)A.B. C.|A|D.|A| n1解析:解析:因为 A 可逆,所以 0,令 AX=X,则 A * AX=A * X,从而有 A * X= 4.设三阶矩阵 A 的特征值为 2 =一 1, 2 =0, 3 =1,则下列结论不正确的是( )(分数:2.00)A.矩阵 A 不可逆B.矩阵 A 的迹为零C.特征值一 1,1 对应的特征向量正交 D.方程组 AX=0 的基础解系含有一个线性无关的解向量解析:解析:由 1 =一 1, 2 =0, 3 =1 得|A|=0,则 r(A)3,即 A 不可逆,(A)正确;又 1 + 2 + 3 =tr(a)=0,所以(B)正确;因为 A
11、的三个特征值都为单值,所以 A 的非零特征值的个数与矩阵 A 的秩相等,即 r(A)=2,从而 Ax=0 的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选(C)5.设 A 为三阶矩阵,方程组 AX=0 的基础解系为 1 , 2 ,又 =一 2 为 A 的一个特征值,其对应的特征向量为 3 ,下列向量中是 A 的特征向量的是( )(分数:2.00)A. 1 + 3B.3 3 一 1C. 1 +2 2 +3 3D.2 1 3 2 解析:解析:因为 AX=0 有非零解,所以 R(A)N,故 0 为矩阵 A
12、的特征值, 1 , 2 为特征值 0 所对应的线性无关的特征向量,显然特征值 0 为二重特征值,若 1 + 3 为属于特征值 0 的特征向量,则有 A( 1 + 3 )= 0 ( 1 + 3 ),注意到 A( 1 + 3 )=0 1 2 3 =一 2 3 ,故一 2 3 = 0 ( 1 + 3 )或 0 1 +( 0 +2) 3 =0, 因为 1 , 3 线性无关,所以有 0 =0, 0 +2=0,矛盾,故 1 + 3 不是特征向量,同理可证 3 3 1 及 1 +2 2 +3 3 也不是特征向量,显然 2 1 2 为特征值 0 对应的特征向量,选(D)6.设 A 为 n 阶实对称矩阵,下列结
13、论不正确的是( )(分数:2.00)A.矩阵 A 与单位矩阵 E 合同 B.矩阵 A 的特征值都是实数C.存在可逆矩阵 P,使 PAP 1 为对角阵D.存在正交阵 Q,使 Q T AQ 为对角阵解析:解析:根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以 A 不一定与单位矩阵合同,选(A)7.设 n 阶矩阵 A 与对角矩阵相似,则( )(分数:2.00)A.A 的 n 个特征值都是单值B.A 是可逆矩阵C.A 存在 n 个线性无关的特征向量 D.A 一定为 n 阶实对称矩阵解析:解析:矩阵 A 与对角阵相似的充分必要条件是其有 n 个线性无关的特征
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 39 答案 解析 DOC
