REG NASA-LLIS-0829-2000 Lessons Learned Availability Cost and Resource Allocation (ACARA) Model to Support Maintenance Requirements.pdf
《REG NASA-LLIS-0829-2000 Lessons Learned Availability Cost and Resource Allocation (ACARA) Model to Support Maintenance Requirements.pdf》由会员分享,可在线阅读,更多相关《REG NASA-LLIS-0829-2000 Lessons Learned Availability Cost and Resource Allocation (ACARA) Model to Support Maintenance Requirements.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Best Practices Entry: Best Practice Info:a71 Committee Approval Date: 2000-04-19a71 Center Point of Contact: GRCa71 Submitted by: Wil HarkinsSubject: Availability, Cost and Resource Allocation (ACARA) Model to Support Maintenance Requirements Practice: Employ statistical Monte Carlo methods to analy
2、ze availability, life cycle cost, and resource scheduling by using the Availability Cost and Resource Allocation (ACARA) program, which is a software tool developed at Lewis Research Center.Programs that Certify Usage: This practice has been used on the International Space Station Program and LeRC M
3、icro-gravity Experiments.Center to Contact for Information: GRCImplementation Method: This Lesson Learned is based on Maintainability Technique number AT-4 from NASA Technical Memorandum 4628, Recommended Techniques for Effective Maintainability.Benefit:The ACARA program is an inexpensive tool for c
4、onducting maintainability, reliability and availability simulations to assess a systems maintenance requirements over a prescribed time interval. Also, availability parameters such as equivalent availability, state availability (percentage of time at a particular output state capability), and number
5、 of state occurrences can be computed.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Implementation Method:The ACARA program models systems represented by reliability block diagrams comprising series, parallel, and M-of-N parallel redundancy blocks.
6、 A hierarchical description of the system is needed to identify the subsystems and blocks contained in the system. Given a reliability block diagram (RBD) representation of a system, the program simulates the behavior of the system over a specified period of time using Monte Carlo techniques to gene
7、rate block failure and repair intervals as a function of exponential and/or Weibull distributions. ACARA interprets the results of a simulation and displays tables and charts for the following:a71 Performance, i.e., availability and reliability of capacity statesa71 Frequency of failure and repair.a
8、71 Lifecycle cost, including hardware, transportation, and maintenance.a71 Usage of available resources, including maintenance man-hours.ACARA InputsA RBD must be prepared for ACARA to simulate a systems availability. The RBD depicts a system, and the arrangement of the blocks depicts a performed fu
9、nction.RBD does not necessarily depict physical connections in the actual system, but rather shows the role of each block in contributing to the systems function. The blocks are sequentially numbered as B1, B2, B3, etc. and subsystems are numbered as S1, S2, etc, which are defined from the inside ou
10、t. Figure 1 shows an example of a system with its corresponding blocks and subsystems.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-refer to D descriptionD Figure 1: Diagram of Blocks and Subsystems Beginning with the innermost set of blocks, each
11、parallel or series set of blocks is partitioned into a subsystem which in turn may combined with other blocks or subsystems.The system shown in Figure 1 contains 6 subsystems:a71 Subsystems 1 and 2 are both variable M-of-N parallel arrangement of batteries. These subsystems respectively contain Bloc
12、ks 6 through 8 and Blocks 9 through 11.a71 Subsystem 3 consists of Subsystems 1 and 2 in parallel.a71 Subsystem 4 is a binary M-of-N parallel arrangement of diodes, Blocks 3 through 5.a71 Subsystem 5 is a parallel arrangement of two turbines, Blocks 1 and 13.a71 Subsystem 6 comprises the entire syst
13、em and is a series arrangement of Subsystems 3 through 5 and Blocks 2 and 12.Modeling Time-to-FailureThe ACARA program uses the Weibull distribution function to model the time-to-failure for the system. The shape and scale factors are adjusted to modify the form of the distribution. Uniform random n
14、umbers from 0 to 1 are generated and substituted for the reliability, R. ACARA uses the Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-early failure (i.e., infant mortality), random failure, and wearout failure (life-limiting failure) models. These
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- REGNASALLIS08292000LESSONSLEARNEDAVAILABILITYCOSTANDRESOURCEALLOCATIONACARAMODELTOSUPPORTMAINTENANCEREQUIREMENTSPDF

链接地址:http://www.mydoc123.com/p-1018475.html