线路保护原理.ppt
《线路保护原理.ppt》由会员分享,可在线阅读,更多相关《线路保护原理.ppt(105页珍藏版)》请在麦多课文档分享上搜索。
1、线路继电保护 原理,线路的分类,从继电保护的角度出发,在电力系统中,线路主要分为以下三类:1. 666kV的中压配电线路;2. 110kV的输配电线路;3. 220kV及以上电压等级的高压输电线路。,配电线路的继电保护,这三种类型线路的继电保护在原理上和构成上有很大的差异:666kV的中压配电线路一般为单电源、辐射状的小电流接地系统线路,故障形式只有三相故障和两相故障两种形式(ABC三相故障或AB、BC、CA两相故障)。保护一般为电流电压保护。主要问题是速断保护区短,线路大部分的故障需要经过延时切除。,配电线路的继电保护,这样的保护配置带来的危害:(1)设备烧毁的程度严重;(2)引发电压稳定性
2、问题;(3)电压跌落持续时间长。,配电线路的继电保护,解决问题的思路:(1)微机保护采用后,简单、经济、可靠不再是电流电压保护的独特优点;(2)配电系统全面推广应用距离保护;(技术上没有困难,不增加复杂程度,除应该考虑TV断线闭锁外,基本没有负面影响)(3)纵联保护原理应用于配电线路保护。(主要考虑用低成本的通信手段传输继电保护的信息,可用的手段包括:导引线、复用光纤、无线电台、移动通信、无线宽带技术 等),110kV输配电线路的继电保护,110kV的输配电线路一般为大电流接地系统的单电源辐射状网络,部分线路末端可能接有小的分散电源; 故障的形式包括:三相故障、两相故障、两相接地故障、单相接地
3、故障共有不同相别的十种故障类型; 采用的保护一般为三段式相间距离保护、三段式接地距离保护、多段式(方向)零序电流保护;,110kV输配电线路的继电保护,末端带有分散电源时,或线路接于较为重要的母线时,可采用纵联保护。 该电压等级线路的继电保护原理和技术都比较成熟,性能基本满足要求。 主要问题成套保护后,只有原理上的后备保护,没有设备上的近后备保护。,220kV及以上输电线路的继电保护,220kV及以上电压等级的输电线路一般按双侧具有电源考虑,所接电网为大电流接地系统,断路器一般采用分相操作,通常采用综合重合闸方式; 故障的形式包括:三相故障、两相故障、两相接地故障、单相接地故障共有不同相别的十
4、种故障类型,同时要考虑非全相运行的问题、同杆并架双回线的跨线故障问题等;,220kV及以上输电线路的继电保护,220kV及以上电压等级输电线路在电力系统中占据着十分重要的地位,对其继电保护有较高的要求,微机保护后,线路保护一般均设计为成套保护,即一套保护完成所有的主保护和原理上的后备保护功能,为了实现设备上的后备,通常采用双重化配置或多重化配置。,220kV及以上输电线路的继电保护,每套保护的配置方式一般为: (1)主保护:能够全线速切的纵联差动。在被保护 区内发生故障时,应不带附加延时地发出跳闸命令。 (2)后备保护:三段式相间距离保护、三段式接地距离保护、多段式(方向)零序电流保护;(3)
5、综合重合闸。,220kV及以上输电线路的继电保护,主要包括以下的几项内容:(1)输电线路的距离保护;(2)输电线路的纵联电流差动保护;(3)输电线路的综合重合闸。,220kV及以上输电线路的继电保护,(1)输电线路的距离保护;(2)输电线路的纵联电流差动保护。(3)输电线路的重合闸。,输电线路的距离保护,距离保护是通过反映故障点到保护安装处的距离而动作的继电保护装置,通常应用于110kV及以上电压等级的输电线路,其原理也可以应用于35kV及以下电压等级的配电线路; 构成距离保护的核心就是测量故障点到保护安装处的距离,并与一个事先整定的距离相比较,测量距离小于整定距离时保护动作; 测量故障距离的
6、方法包括阻抗法、行波法和雷达法,其中应用最多的是阻抗法,此处重点介绍阻抗法。,测量阻抗及其与故障距离之间的关系,测量阻抗定义为保护安装处测量电压与测量电流之比:,测量阻抗及其与故障距离之间的关系,在电力系统正常运行时, 近似为额定电压, 为负荷电流, 为负荷阻抗。负荷阻抗的量值较大,其阻抗角为数值较小的功率因数角(一般功率因数为不低于0.9,对应的阻抗角不大于25.80),阻抗性质以阻性为主,如下图2中的 所示。,测量阻抗及其与故障距离之间的关系,电力系统发生金属性短路时, 降低, 增大, 变为短路点与保护安装处之间短路阻抗 ,对于具有均匀分布参数的输电线路来说, 与短路距离 成线性正比关系,
7、即:,测量阻抗及其与故障距离之间的关系,短路阻抗的阻抗角就等于输电线路的阻抗角,数值较大(对于220kV及以上电压等级的线路,阻抗角一般不低于750),阻抗性质以感性为主。当短路点分别位于图1 中的k1 、k2和k3点时,对应的短路阻抗分别如图2中的 、 和 所示。,图1 线路系统图,测量阻抗及其与故障距离之间的关系,依据测量阻抗 在上述不同情况下的“差异”,保护就能够“区分”出系统是否出现故障,在发现有故障的情况下,可以进一步地“区分”出是区内故障还是区外故障。 继电保护:依据“差异”,实现“区分”,三相系统中测量电压和测量电流的选取,上面的讨论是以单相系统为基础的。在这种单相系统中,测量电
8、压 就是保护安装处的电压,测量电流 就是线路中的电流,系统金属性短路时两者之间的关系为:(5),三相系统中测量电压和测量电流的选取,该式是距离保护能够用测量阻抗来正确表示故障距离的前提和基础,即只有测量电压、测量电流之间满足该式时,测量阻抗才能正确地反应故障的距离。 在实际三相系统的情况下,由于存在多种不同的短路类型,而在各种不对称短路时,各相的电压电流都不再简单地满足式(5),所以无法直接用各相的电压、电流构成距离保护的测量电压和电流。,三相系统中测量电压和测量电流的选取,现以图3所示网络中k点发生短路故障时的情况为例,对此问题进行分析讨论。按照对称分量法,可以求出M母线上各相的电压:,Lk
9、 (Z1 ,Z2, Z0) Lk,G,M,KZ,G,N,k,三相系统中测量电压和测量电流的选取,(6a),(6b),(6c),三相系统中测量电压和测量电流的选取,(6)式的成立与故障类型无关,即对任何类型的故障都成立; 对于不同类型和相别的故障,故障点的边界条件是不同的,即(6)式中 、 和 的取值是不同的,下面以单相接地故障情况为例进行讨论。,三相系统中测量电压和测量电流的选取,以A相单相接地短路故障为例进行分析。在A相金属性接地短路的情况下, ,式3-6a变为:,(7),(8),得到:,三相系统中测量电压和测量电流的选取,式(8)与式(5)具有相同的形式,因而由 、 算出的测量阻抗能够正确
10、反应故障的距离,从而可以实现对故障区段的比较和判断。,三相系统中测量电压和测量电流的选取,由于A相接地时 、 均不等于零,式(6b)和(6c)无法变成式(5)的形式,即若 、或 、 ,则 、或 、 之间都不满足式(5),所以两非故障相的测量电压、电流不能准确地反应故障的距离。,三相系统中测量电压和测量电流的选取,在另一方面,由于 、 均接近正常电压,而 、 均接近正常负荷电流,B、C两相的工作状态与正常负荷状态相差不大,所以在A相故障时,由B、C两相电压电流算出的测量阻抗都会比较大,算出的距离一般都大于整定距离,由它们构成的距离保护一般都不会动作,但在某些特殊的情况下(比如保护安装处零序电流很
11、大时),也有可能动作。,三相系统中测量电压和测量电流的选取,同理可以分析B相和C相单相接地故障时的情况,分析表明,只有故障相电压与带零序电流补偿的故障相电流之间满足(5)式,能够正确测量故障距离,非故障相测出的阻抗接近负荷阻抗,一般不会动作。,三相系统中测量电压和测量电流的选取,其他类型(两相接地、两相短路、三相故障)的故障的情况也类似,只有用故障相的电压和电流(带零序补偿)进行运算时,才能准确地算出故障距离。计算量中含有非故障相电压、电流时,算出的测量阻抗不能准确地反映故障距离,并且一般情况下都大于实际的故障距离,所以不会动作。,故障环的概念,故障电流可能流通的通路称为故障环。 在单相接地故
12、障的情况下,存在一个故障相与大地之间的故障环(相地故障环); 两相接地故障的情况下,存在两个故障相与大地之间的相地故障环和一个两故障相之间的故障环(相相故障环); 两相不接地故障的情况下,存在一个两故障相之间的相相故障环; 三相故障的情况下,存在三个相地故障环和三个相相故障环。,故障环的概念,分析表明,距离保护的测量电压、电流取为故障环上的电压、电流时,计算出的测量阻抗能够正确的反映故障距离,非故障环上的电压、电流之间算出的测量阻抗不能准确地反映故障距离,一般情况下大于故障距离,不会动作。所以距离保护的动作行为应以故障环上电压、电流计算的结果为准,非故障环上电压、电流计算的结果不予考虑。,故障
13、环的概念,在传统的距离保护中,故障环的选取是靠冗余接线来实现的,即距离保护的每一段都有三个相间阻抗继电器和三个接地阻抗继电器组成,三段式保护中需要18个独立的阻抗继电器。对于任何一种类型和相别的故障,每一段的6个继电器中,至少有一个是在故障环上,它能够正确测量故障距离,其他不在故障环上的继电器不能正确测量,但一般不动作。 不能正确测量有两个方面的含义,一方面是把测量阻抗测大,反映出故障距离变远,即不动作;另一方面是把测量阻抗测小,反映出故障距离变近,可能导致在区外故障情况下误动作。此处,非故障环上的电压、电流算出的阻抗一般是第一种情况,通常不会动作,故障环的概念,微机保护中,距离保护的硬件接线
14、只有一套,故障环的选取是由软件实现的,分两种情况: 第一种情况是发生故障后先进行选相,找出故障类型和故障相别后,仅用故障相(即故障环上)的电压、电流进行计算,非故障相环上的电压、电流根本不参与运算;(先选相,再计算) 第二种情况是针对每一个故障,用故障环和非故障环上的电压、电流都进行计算,但仅以故障环上电压、电流计算的结果作为判断故障距离的依据。(先计算,后用选相的结果进行复核) 早期的微机保护普遍采用第一种方式,新型微机保护倾向于采用第二种。,在理想情况下,在金属性短路的时候,测量阻抗是与整定阻抗同方向的,在这种情况下,算出测量阻抗后直接与整定阻抗比较大小,就能够判断出故障的范围。 实际情况
15、下,由于各种误差因素的存在,以及过渡电阻的影响,测量阻抗可能与整定阻抗之间有一定的角度,这时用直接比较大小的方法就不行了。 为了保证区内故障的情况下保护可靠动作,区外故障时可靠不动作,一般将阻抗继电器的动作范围设定为一个包括整定阻抗对应的线段在内,但在整定阻抗方向上不超出整定阻抗的一个区域,最常用的区域有圆形区域和四边形区域。,测量阻抗与整定阻抗的比较,圆形区域又包括方向特性圆、全阻抗圆、偏移特性圆和上抛特性圆等几种,如下图。,测量阻抗与整定阻抗的比较,每一种特性都有两种不同的实现办法,即绝对值比较法和相位比较法,以方向圆特性为例,绝对值比较方程和相位比较方程分别为:,测量阻抗与整定阻抗的比较
16、,Zset/2,Zset,R,jX,o,Zm,测量阻抗与整定阻抗的比较,测量阻抗已经用前述的算法算出,整定阻抗为事先设定好的常量,将两者直接代入到绝对值比较或相位比较的方程中,判断方程是否满足,就可以知道测量阻抗是否落入到动作区域之内。 在园特性的数字式保护中,一般采用相位比较的方法进行判断。,图阻抗轨迹进入段边界时,启动两个计时器,振荡闭锁延时OSBD和振荡跳闸延时OSTD。如果阻抗轨迹停留在段和段之间,时间超过OSBD整定值,判定为系统稳态振荡;如果阻抗轨迹经OSTD整定时间进入段,判定为非稳态振荡。这里OSTD整定值必须小于OSBD.,检测一个非稳态振荡有两种方式。第一种方式,如果OST
17、D整定时间到,且阻抗轨迹进入段,那么判定为非稳态振荡,发出跳闸命令,阻抗轨迹见Trip-On-the-Way-In(TOWI);第二种方式,如果OSTD整定时间到,且阻抗轨迹从段滑出,同样判定为非稳态振荡,发出跳闸命令,阻抗轨迹见Trip-On-the-Way-Out(TOWO),220kV及以上输电线路的继电保护,(1)输电线路的距离保护; (2)输电线路的纵联电流差动保护。 (3)输电线路的重合闸。,纵联电流差动保护,基于基尔霍夫电流定律的纵联电流差动保护,是到目前为止最为完善的继电保护原理,在发电机、变压器、母线、电抗器、大容量电动机和输配电线路等电气设备中都得到了应用。其基本工作原理如
18、下:,纵联电流差动保护的基本原理,被保护设备,*,*,*,*,I-I,纵联电流差动保护示意图,TA1,TA2,KD,被保护设备:发电机变压器电动机母线线路电抗器等,纵联电流差动保护分析,即流入到差动继电器KD中的电流为0,继电器不会动作。,正常及外部故障时,,纵联电流差动保护分析,被保护设备发生故障时(区内故障时),流入KD的电流为故障电流的二次值,KD动作。 即区内故障时,流入KD的就等于故障点的故障电流,所以从这一点上说,差动保护是一种反映故障分量的保护;,纵联电流差动保护问题,可见,在理想情况下,根据KD中是否有电流,就能够区分出是否有内部故障,是否应将被保护设备从系统中切除。 在实际情
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线路 保护 原理 PPT
