智能交通大数据综合服务平台设计方案.doc
《智能交通大数据综合服务平台设计方案.doc》由会员分享,可在线阅读,更多相关《智能交通大数据综合服务平台设计方案.doc(10页珍藏版)》请在麦多课文档分享上搜索。
1、智能交通大数据 综合 服务平台 1. 概述 随着经济发展、城市化进程的加快以及城市规模不断扩大,机动车拥有量及道路交通流急剧增加,城市紧缺的土地资源和高密度的土地利用模式,使得交通供给与交通需求之间的矛盾日益突出,交通拥堵、停车困难、环境恶化等交通问题不断加剧,影响了城市的可持续发展及人民生活水平的提高,阻碍了经济的发展。 大城市 也面临同样的问题,近年来机动车保有量持续快速增长,高峰交通拥堵日益加剧,交通发展面临严峻形势和新的挑战。 很多城市 在市区主要范围内实施“错峰限行”等交通管理措施。采取调控交通需求削减交通需求总量其原因之一是 城市 道路 已经难以通过基础设施规划建设来改善交通。另一
2、方面 ,如何利用智能交通系统 (ITS)来缓解交通、提升交通效率也是可以着力的一个方向。 目前 各 交通管理部门建立了功能相对完善的交通指挥控制中心,包括交通信号控制系统、道路交通监控系统、交通诱导显示系统、停车管理系统、交通违章处理系统等,初步实现了交通信号控制 、道路监控、交通信息综合查询、有 /无线指挥调度及交通诱导等基础功能。 ITS 的各种信息采集技术(如微波采集技术、视频采集技术、环形线圈感应式采集技术等)被广泛地运用于交通数据采集,公安交管部门不仅具备了交通基础信息,还拥有了各类动态数据,如车辆实时营运信息、道路交通状况等,采集的数据类型包括属性数据、空间数据、影像数据等。对交通
3、三要素(人流、车辆、道路)连续不断采集的多源交通数据流产生了巨量的交通数据,具有典型的“ 3V”特性:大容量、多样性、高速度,也具有价值、复杂性的特点,属于名符其实的交通“大数据”。仅以 国内 某 城市 内道路卡口数据为例,每天达到约 15GB 的数据量,要实现对城市道路交通的整体运营水平和人们出行规律的深度挖掘,就要以日、月甚至年为时间粒度对大数据进行计算和分析。 数据是智能交通的核心,数据为王的大数据时代已经到来 。如何高效地从海量数据中分析、挖掘所需的信息和规律,结合已有经验和数学模型等生成更高层次的决策支持信息,获得各类分析、评价数据,为交通诱导、交通控制、交通需求管理、紧急事件管理等
4、提供决策支持,为交通管理者、运营者和个体出行者提供交通信息,成为当务之急。交通数据分析的发展趋势正如 TDWI 大数据分析报告指出的,由常规分析转向深度分析,如图 1 所示。 图 1分析的趋势 在交通数据分析方面,生昕格 7交流了交通云数据处理平台的一个具体应用实例,该平台基于廉价计算机构建集群,用 Hbase 存储大数据,采用 MapReduce进行分布式计算; Chen 等 8利用 MapReduce 框架对交通流预测;李磊等 9论述了基于云计算的铁路数据中心的逻辑结构。这些工作没有涉及交通大数据处理平台需要面对的各种应用场景以及系统构建应遵循的原则,如没有涉及实时数据流处理问题。面对交通
5、大数据,如何存储、组织和管理并提供服务是 ITS 面临的一个挑战。本文针对如何构建交通大数据处理平台开展研究,主要从使能技术方面展开论述,不对具体业务系统进行评述。 2. 交通大数据处理平台的功能需求及其逻辑框架 本节通过介绍智能交通系统大数据的特点 以及提供服务的要求分析了交通大数据分析平台需具备的特点,提出了交通大数据处理平台逻辑框架,并进一步阐述了平台构建的基本原则建议。 2.1 交通大数据处理平台需具备的特性 如前所述,交通服务要提供全面的路况,需要交通综合监测网络对城市道路交通状况、交通流信息、交通违法行为等的 全面监测,采集、处理 及分析大量的实时监测数据,具有数据量巨大的特点;随
6、着 城市机动车保有量 不断提高,城市道 路交通状况日趋复杂化 ,交通流特性呈现随时间变化大、 区域关联性强 的特点,需要根据实时的交通流数据及时全面采集、处理、分析等,因此具有系统负载时变性高、波动大的特点,应支持低延时、高并发事务;公众出行服务对交通信息发布的时效性要求高 ,需将准确的信息及时提供给不同需求的主体,信息处理、分析实时性要求高; ITS 需面向政府、社会和公众提供交通服务,为出行者提供安全、畅通、高品质的行程服务,保障交通运输的高安全、高时效和高准确性,要求 ITS 应用系统具有高可用性和高稳定性。这给交通大数据处理平台提出了挑战,平台需满足的特性如表 1 所示。 交通大数据处
7、理平台面对海量数据,系统不能仅依靠 少数几台机器的升级(Scale-up,纵向扩展 )满足数据量的增长, 必须做到横向可扩展 (Scale-out),既满足性能的要求,也满足存储的要求(包括结构性数据、非结构形式、半结构性数据);由于服务需求的多样性,平台既要支持 交通数据流的实时分析 与处理又要 支持复杂查询与深度分析 所需的高性能、低延迟需求。平台需具 有高度容错性 ,大数据的容错性要求在作业 (Job)执行过程中,一个参与节点失效不需要重做整个作业。机群节点数的增加会增加节点失效概率,在大规模机群环境下,节点的失效不再是稀有事件,因此在大规模机群环境下,系统不能依赖于硬件来保证容错性,要
8、更多地考虑软件级容错,同时增加系统的可用性。系统的开放性也是十分重要的,在下一小节会知道 ITS 是一个巨系统,各子系统之间数据交换 、共享以及服务集成是必不可少的,同时要求系统支持迭代开发,可不断更新 /增加功能;系统服务不但专业人员可以使用,业务人员也可以使用,分析可以实现大众化。 另外,平 台应支持异构环境 。交通大数据平台的建 设是分步骤、分阶段进行的,设备的采购、更新会造成硬件系统的异构,建设同构大规模机群难度较大;另外,对异构环境的支持可以有效地利用历史上积累的计算机资源,降低硬件成本的投入。 表 1交通大数据处理平台需具备的特性 特性 简要说明 高度可扩展性 横向大规模可扩展,大
9、规模并行处理 实时性 对交通数据流、事件的实时处理 高性能、低延迟分析 快速响应复杂查询与深度分析、实时分析结果 高度容错性 系统在硬件级、软件级实现容错 可用性 系统具有相当高的可靠性 支持异构环境 对硬件平台一致性要求不高,适应能力强 开放性、易用性 系统之间可实现数据共享、服务集成 较低成本 较高的性价比 2.2 交通大数据分析平台逻辑框架 ITS 是一个复杂的巨系统。中国 ITS 体系框架 6确定了以下内容:用户服务包括 9 个服务领域、 47 项服务、 179 项子服务;逻辑框架包括 10 个功能领域、57 项功能、 101 项子功能、 406 个过程、 161 张数据流图;物理框架
10、包括 10 个系统、 38 个子系统、 150 个系统模块、 51 张物理框架流图;应用系统有 58 个。 ITS内容庞多、结构复杂、技术含量高,需要多个领域、多个部门的长期合作。 ITS涉众面广,包括政府部门、企业、公众,由此决定了其信息服务需求的多样性:交通指挥部门需要实时连续交通监控(如流量、平均车速、饱和度、占有率等);城市规划部门需要当前和历史路网交通流和交 通需求数据;出行者需要即席查询交通信息等。因此,涉及交通数据流实时分析处理( RTAP)、联机事务处理( OLTP)、联机分析处理( OLAP)、联机分析与挖掘( OLAM)等功能。 图 2 大数据分析与处理平台通用体系结构 为
11、此,构建交通大数据分析与处理平台需要结合分布式并行处理技术与实时数据流处理技术。其逻辑功能框架如图 2 所示。层次功能结构逻辑如图 2 右半部分所示,自底向上分别是分布式存储层、分布式处理层、元数据服务层、处理分析层(包括复杂事件处理 CEP、实时分析处理 RTAP、联机分析处理 OLAP、深度分析 OLAM)以及交通大数据分析处理应用层;同时,需要对分布式系统进行作业、资源调度、管理的协调与监控中间件的支持,支持工作流及其调度的设施。而在图 2 左半部分则展示了交通大数据分析与处理平台的部件结构图,在逻辑上可划分为实时数据流处理子系统与大数据深度分析(知识获取与模式发现)子系统。 实时数据流
12、处理子系统接受实时交通数据流,数据流元组记录随时间变化的空间(如位置、区域等)信息、以及车牌、卡口、速度等属性数据或视频、图像数据,具有动态、海量、高维、时效、连续、多源、无限等特性。该子系统是实现实时交通监控系统的数 据基础,能够为指挥调度、道路规划、事故预警等交通信息管理和决策提供支持,为交通用户提供更为全面和便捷的服务。该子系统包含数据流管理系统,提供对数据流的连续查询和混合查询支持。连续查询用于实时持续不断地监控,如“查询超速的车辆信息”以及“开始监控违法车辆行踪”是连续运行的查询,后者涉及空间数据库。用户可以指定连续查询的滑动时间窗口,对于进入窗口且符合查询条件的事件进行报警监控。混
13、合查询用于那些不仅需要涉及动态流数据还需要访问静态历史和空间数据的复杂查询,如“统计未来5 分钟内从西湖区流出的车流量”。 深度分析子 系统运用各种先进的数据处理技术,包括数据集成技术、人工智能与数据挖掘技术、决策支持与专家系统等,根据各交通子系统的需求和它们之间的内在联系,对来自多来源渠道、格式不一致的数据在综合交通信息的基础上进行抽取、集成,并进行深度分析与处理,获得可用于决策的模式、模型、规则和知识。需要改造传统的数据挖掘、机器学习算法,以适应大数据的需要。 平台对外提供各种交通信息服务,实现多种模式交通信息发布,包括 Web 交通信息服务、电台电视台、交通服务咨询热线、手机与车载导航等
14、移动终端、触摸屏查询终端、可变情报板、交通指南等载体 的交通信息发布。各种应用与服务之间通过一个统一的服务接口进行连接,服务接口向上层应用提供一致的调用接口,屏蔽底层细节,它是一个接口规范,用以隔离应用与服务,实现两者的独立性,以期达到平台功能扩展的灵活性。平台的数据则来自 ITS 交通数据采集监控网,该层包括网络层(信息传输)和感知层(信息感知与获取)。 3. 交通大数据处理平台的构建 本节阐述在当前计算技术下的一个可能的平台方案。据前述,平台必须具有高度可扩展性、实时性、高性能、低延迟分析、高度容错性、可用性、支持异构环境、开放性、易用性,同时也希望具有较低成本;其核心技术包括大规模数据流
15、处理技术以及大规模数据管理、分析技术。这要求我们在进行平台构建时作出合理的决策。 对大数据进行分析的基本策略是把计算推向数据,而不是移动大量的数据;对大数据处理、分析的性能优化,分布式并行是必然选择,并且软件系统性能的提升可以降低企业对硬件的投入成本、节省计算资源,提高系统吞吐量;但异构节点之间的性能差 异可能导致系统“木桶效应”,因此,异构机群需要特别关注负载均衡、任务调度等方面的设计;交通数据量及其多样性给数据管理系统提出了新的要求,在存储以及处理方式需要具备较好的扩展性,无共享结构(Shared-nothing)的存储方式是较好的候选方案,传统数据库缺少水平扩展的能力,在系统设计决策中根
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 交通 数据 综合 服务 平台 设计方案
