2012-2013学年河南省安阳一中高一第二次阶段考试数学试卷与答案(带解析).doc
《2012-2013学年河南省安阳一中高一第二次阶段考试数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2012-2013学年河南省安阳一中高一第二次阶段考试数学试卷与答案(带解析).doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、2012-2013学年河南省安阳一中高一第二次阶段考试数学试卷与答案(带解析) 选择题 设集合 , ,则 等于( ) A B C D 答案: B 试题分析:因为集合 A中 |x-2| 2,那么可知 -2 x-2 2得到 0 x 4,故集合A=x|0 x 4,而集合 B中,表示的为二次函数的值域,结合二次函数的性质可知在给定区间( -1,0)递增,( 0,2)递减,那么可知函数的值域为 y|-4 y 0,可知0,那么 ,故选 B。 考点:本题主要考查了集合的交集和补集的运算的运用。 点评:解决该试题的关键是能准确的表示出集合 A,B,同时要对绝对值不等式和二次函数的 性质要熟练,进而得到补集和交
2、集的值。 若函数 是 R上的增函数,则实数 的取值范围为( ) A B C D 答案: D 试题分析:根据题意可知 y=ax在 a1是递增的,同时对于一次函数 4- 0第二段函数递增,那么 aa 4,故选 D. 考点:本题主要考查了分段函数的单调性的运用 点评:解决该试题的关键是理解分段函数在 R上递增,要保证每一段都是递增的,同时当 x=1时,第一段的函数值要大于等于第二段的函数值。 在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为 1 3,则锥体被截面所分成的两部分的体积之比为( ) A 1 B 1 9 C 1 D 1 答案: D 试题分析:设小锥体的高为 h1,大锥体的高
3、为 h2,利用一个锥体被平行于底面的截面所截得的小锥体与原锥体体积之比等于相似比的立方, 而这个截面面积与底面面积之比等于相似比的平方,即 可得 ,进而得到体积的比,为 D. 考点:本题主要考查了几何体的体积比与相似比的关系,常用此法简化解题过程,同学注意掌握应用 点评:解决该试题的关键是几何体中,体积比是相似比的立方,面积比是相似比的平方,直接求解即可得到结论。 设 f(x)是 R上的奇函数,且当 x0时 ,f(x)=x(1+ ),则当 x0,那么代入已知式中,得到f(-x)=-x(1+ )=-f(x),可知 f(x)= x(1+ ),可知答案:为 D. 考点:本题主要考查了奇偶性定义及选择
4、题的解法,同时考查求函数的值等有关知识,属于基础题 点评:解决该试题的关键是利用奇函数的定义,那么结合对称性,将 x0的区域,结合已知的式求解得到。 已知 在 上是 的减函数,则 的取值范围是 ( ) A B C D 答案: B 试题分析:原函数是由简单函数 t=2-ax和 y=logat共同复合而成 a 0, t=2-ax为定义 域上减函数, 而由复合函数法则和题意得到, y=logat在定义域上为增函数, a 1 又函数 t=2-ax 0在( 0, 1)上恒成立,则 2-a0时再讨论。 故要满足题意, t=ax2+2x+1要能取到所有正实数,抛物线要与 x轴有交点, =22-4a0 解得
5、a0或 a1 故选 A 考点:本题主要考查了对数函数的单调性和值域的求解的运用。 点评:解决该试题的关键是熟练运用对数函数的值域及最值、二次函数的图象特征即性质,体现了转化的数学思想 给出下列正方体的侧面展开图,其中 分别是正方体的棱的中点,那么,在原正方体中, 与 所在直线为异面直线的是 A B C D 答案: C 试题分析: A:把正方体的侧面展开图还原为正方体为: 因为 A、 B、 C、 D分别是正方体的棱的中点, 所以 AB CD 所以 A错误 B:把正方体的侧面展开图还原为正方体为: 因为 A、 B、 C、 D分别是正方体的棱的中点,并且结合正方体的结构特征, 所以可得 AB CD
6、所以 B错误 C:把正方体的侧面展开图还原为正方体为: 因为 A、 B、 C、 D分别是正方 体的棱的中点, 所以分别延长线段 AB、线段 DC交于点 F, 所以 AB与 CD不是异面直线, 所以 C正确 故选 C 考点:本题主要考查了空间中的直线与直线的位置关系,即平行、相交、异面的判定 点评:解决该试题的关键对于侧面展开图的还原,确定出正方体中 AB与 CD是否为异面直线的位置问题的运用。 A R B -9, + ) C -8, 1 D -9, 1 答案: C 试题分析:由于当 0 x 3,则函数开口向下,对称轴为 x=1,那么在定义域先增厚减,那么可知函数的最小值为 x=3时取得为 -3
7、,x=1取得最大值为 1,;当 -2 x 0时,则二次函数开口向上,对称轴为 x=-3,那么可知在定义域内地增,那么可知函数的最小值为 x=-2时取得为 -8,最大值在 x=0时取得为 0.综上可知分段函数的值域是各段的并集可知为 -8,1,选 C. 考点:本题主要考查了分段函数的 值域的求解。 点评:解决该试题的关键是对于二次函数的性质的熟练运用,掌握对称轴和定义域的关系,得到最值问题的求解。 设集合 ,若 ,则 的取值范围是( ) A B C D 答案: A 试题分析:由于结合 A中, |x-a|0,故可知下一步可断定的根的区间为 ,故答案:为 。 考点:本题主要考查了函数与方程思想的运用
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 2013 学年 河南省 安阳 中高 第二次 阶段 考试 数学试卷 答案 解析
