【考研类试卷】考研数学二(线性代数)-试卷21及答案解析.doc
《【考研类试卷】考研数学二(线性代数)-试卷21及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学二(线性代数)-试卷21及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(线性代数)-试卷 21 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A,B 为两个 n 阶矩阵,下列结论正确的是( )(分数:2.00)A.A+B=A+BB.若AB=0,则 A=O 或 B=OC.A-B=A-BD.AB=AB3.设 A,B 都是 n 阶可逆矩阵,则( )(分数:2.00)A.(A+B) * =A * +B *B.(AB) * =B * A *C.(A-B) * =A * -B *D.(A+B) * 一定可逆4.设 (分数:2.0
2、0)A.A -1 P 1 P 2B.P 1 A -1 P 2C.P 1 P 2 A -1D.P 2 A -1 P 15.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关C. 1 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关6.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可
3、逆的充分必要条件是 r(A)=n7.与矩阵 A= 相似的矩阵为( ) (分数:2.00)A.B.C.D.8.设 (分数:2.00)A.合同且相似B.相似但不合同C.合同但不相似D.既不相似又不合同二、填空题(总题数:5,分数:10.00)9. (分数:2.00)填空项 1:_10.设 A= (分数:2.00)填空项 1:_填空项 1:_11.设 为非零向量,A= (分数:2.00)填空项 1:_12.设 A= (分数:2.00)填空项 1:_13.设 A= (分数:2.00)填空项 1:_三、解答题(总题数:15,分数:32.00)14.解答题解答应写出文字说明、证明过程或演算步骤。_15.
4、(分数:2.00)_16.设 是 n 维单位列向量,A=E- T 证明:r(A)n(分数:2.00)_17.设 A 为 n 阶矩阵,证明:r(A * )= (分数:2.00)_18.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_19.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_20. (分数:2.00)_设 A,B,C,D 都是 n 阶矩阵,r(CA+DB)=n(分数:4.00)(1).证明 r (分数:2.00)_(2).设 1 , 2 , r 与 1 , 2 ,
5、s 分别为方程组 AX=0 与 BX=0 的基础解系,证明: 1 , 2 , r , 1 , 2 , s 线性无关(分数:2.00)_21.设 A= (分数:2.00)_22.设 A= (分数:2.00)_设 A,B 为三阶矩阵,且 AB=A-B,若 1 , 2 , 3 为 A 的三个不同的特征值,证明:(分数:4.00)(1).AB=BA;(分数:2.00)_(2).存在可逆矩阵 P,使得 P -1 AP,P -1 BP 同时为对角矩阵(分数:2.00)_23.设 (分数:2.00)_24.设 A,B 为 n 阶矩阵,且 r(A)+r(B)n,下列命题正确的是( )(分数:2.00)A.A
6、的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n 解析:解析:若 A T A 可逆,则 r(A T A)=n,因为 r(A T A)=r(A),所以 r(A)=n;反之,若 r(A)=n,因为r(A T A)=r(A),所以 A T A 可逆,选(D)7.与矩阵 A= 相似的矩阵为( ) (分数:2.00)A.B.C.D. 解析:解析:A 的特征值为 1,2,0,因为特征值都是单值,所以 A 可以对角化,又因为给定的四个矩阵中只有选项(D)中的矩阵特征值与 A 相同且可以对角化,所以选(D)8.设
7、(分数:2.00)A.合同且相似B.相似但不合同C.合同但不相似 D.既不相似又不合同解析:解析:显然 A,B 都是实对称矩阵,由E-A=0,得 A 的特征值为 1 =1, 2 =2, 3 =9, 由E-B=0,得 B 的特征值为 1 =1, 2 = 3 =3,因为 A,B 惯性指数相等,但特征值不相同,所以 A,B 合同但不相似,选(C)二、填空题(总题数:5,分数:10.00)9. (分数:2.00)填空项 1:_ (正确答案:正确答案: )解析:解析:10.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:2)填空项 1:_ (正确答案:1)解析:解析:A11.设 为非零
8、向量,A= (分数:2.00)填空项 1:_ (正确答案:正确答案:3,k(-3,1,2) T)解析:解析:AX=0 有非零解,所以A=0,解得 a=3,于是 A= 12.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:-2)解析:解析:因为A * =A 2 =4,且A0,所以A=2,又 AA * =AE=2E,所以 A -1 = A * ,从而 A -1 的特征值为 13.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:4)解析:解析:由E-A= 三、解答题(总题数:15,分数:32.00)14.解答题解答应写出文字说明、证明过程或演算步骤。_解析:15.
9、 (分数:2.00)_正确答案:(正确答案: =a 1 a 2 a n-1 +a n (a 1 a 2 a n-2 +a n-1 D n-2 ) =a 1 a 2 a n-1 +a 1 a 2 a n-2 a n +a n a n-1 D n-2 )解析:16.设 是 n 维单位列向量,A=E- T 证明:r(A)n(分数:2.00)_正确答案:(正确答案:A 2 =(E- T )(E- T )=E-2 T + T T ,因为 为单位列向量,所以 T =1,于是 A 2 =A由 a(E-A)=O 得 r(A)+r(E-A)n,又由 r(A)+r(E-A)rA+(E-A)=r(E)=n,得 r(
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 21 答案 解析 DOC
