DLA DSCC-VID-V62 12623-2012 MICROCIRCUIT DIGITAL MIXED SIGNAL MICROCONTROLLER MONOLITHIC SILICON.pdf
《DLA DSCC-VID-V62 12623-2012 MICROCIRCUIT DIGITAL MIXED SIGNAL MICROCONTROLLER MONOLITHIC SILICON.pdf》由会员分享,可在线阅读,更多相关《DLA DSCC-VID-V62 12623-2012 MICROCIRCUIT DIGITAL MIXED SIGNAL MICROCONTROLLER MONOLITHIC SILICON.pdf(21页珍藏版)》请在麦多课文档分享上搜索。
1、 REVISIONS LTR DESCRIPTION DATE APPROVED Prepared in accordance with ASME Y14.24 Vendor item drawing REV PAGE REV PAGE 18 19 20 21 REV STATUS OF PAGES REV PAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 PMIC N/A PREPARED BY Phu H. Nguyen DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http:/www.landa
2、ndmaritime.dla.mil/ Original date of drawing YY MM DD CHECKED BY Phu H. Nguyen TITLE MICROCIRCUIT, DIGITAL, MIXED SIGNAL MICROCONTROLLER, MONOLITHIC SILICON 12-12-10 APPROVED BY Thomas M. Hess SIZE A CODE IDENT. NO. 16236 DWG NO. V62/12623 REV PAGE 1 OF 21 AMSC N/A 5962-V077-12 Provided by IHSNot fo
3、r ResaleNo reproduction or networking permitted without license from IHS-,-,-DLA LAND AND MARITIME COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/12623 REV PAGE 2 1. SCOPE 1.1 Scope. This drawing documents the general requirements of a high performance mixed signal microcontroller microcircu
4、it, with an operating temperature range of -40C to +85C. 1.2 Vendor Item Drawing Administrative Control Number. The manufacturers PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation: V62/126
5、23 - 01 X E Drawing Device type Case outline Lead finish number (See 1.2.1) (See 1.2.2) (See 1.2.3) 1.2.1 Device type(s). Device type Generic Circuit function 01 MSP430G2302-EP Mixed signal microcontroller 1.2.2 Case outline(s). The case outlines are as specified herein. Outline letter Number of pin
6、s JEDEC PUB 95 Package style X 14 JEDEC MO-153 Plastic small outline 1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer: Finish designator Material A Hot solder dip B Tin-lead plate C Gold plate D Palladium E Gold flash palladi
7、um Z Other Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DLA LAND AND MARITIME COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/12623 REV PAGE 3 1.3 Absolute maximum ratings. 1/ Voltage applied at VCCto VSS. -0.3 V to 4.1 V Voltage applied to
8、 any pin -0.3 V to VCC+0.3 V 2/ Diode current at any device terminal 2 mA Storage temperature: 3/ Unprogrammed device -55C to 150C Programmed device -55C to 150C 1.4 Thermal characteristics. Thermal information Case outline X Units Junction to ambient thermal resistance, JA4/ 98.7 C/W Junction to ca
9、se (top) thermal resistance, JCtop5/ 26.8 Junction to board thermal resistance, JB6/ 41.2 Junction to top characterization parameter, JT7/ 1.1 Junction to board characterization parameter, JB8/ 40.5 Junction to case (bottom) thermal resistance, JCbot9/ N/A 1/ Stresses beyond those listed under “abso
10、lute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute maximum rated conditions for ext
11、ended periods may affect device reliability. 2/ All voltage values referenced to VSS. The JTAG fuse blow voltage, VFBis allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse 3/ Higher temperature may be applied during board soldering accordi
12、ng to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 4/ The junction to ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-k-board, as specif
13、ied in JESD51-7, in an environment described in JESD51-2a. 5/ The junction to case (top) thermal resistance is obtanied by simulating a cold plate test on the package top. No specified JEDEC- standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. 6/ The junction
14、 to board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. 7/ The junction to top characterization parameter, JT, estimates the junction teperature of a device in a real system and is extracted fro
15、m the simulation data for obtaining JA, using a procedure described in JESD51-2a (sections 6 and 7). 8/ The junction to board characterization parameter, JB, estimates the junction teperature of a device in a real system and is extracted from the simulation data for obtaining JA, using a procedure d
16、escribed in JESD51-2a (sections 6 and 7). 9/ The junction to case (bottom) thermal resistance is obtanied by simulating a cold plate test on the exposed (power) pad. No specified JEDEC- standard test exists, but a close description can be found in the ANSI SEMI standard G30-88 Provided by IHSNot for
17、 ResaleNo reproduction or networking permitted without license from IHS-,-,-DLA LAND AND MARITIME COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/12623 REV PAGE 4 1.5 Recommended operating conditions. Supply voltage, (VCC): During program execution . 1.8 V to 3.6 V During flash program/erase
18、. 2.2 V to 3.6 V Supply voltage, (VSS) 0 V Operating free air temperature, (TA) . -40C to 85C Processor frequency (Maximum MCLK frequency) 10/ 11/ VCC= 1.8 V, Duty cycle = 50% 10% dc to 6 MHz VCC= 2.7 V, Duty cycle = 50% 10% dc to 12 MHz VCC= 3.3 V, Duty cycle = 50% 10% dc to 16 MHz 2. APPLICABLE DO
19、CUMENTS JEDEC SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC) JEP95 Registered and Standard Outlines for Semiconductor Devices JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air) JESD51-7 High Effective Thermal Conductivity Test Board for Leaded Surface
20、Mount Packages JESD51-8 Integrated Circuits Thermal Test Method Environment Conditions Junction-to-board J-STD-020 Joint IPC/JEDEC standard for moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices. (Copies of these documents are available online at http:/www.j
21、edec.org or from JEDEC Solid State Technology Association, 3103 North 10th Street, Suite 240S, Arlington, VA 22201.) AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) STANDARD ANSI SEMI STANDARD G30-88 null Test Method for Junction-to-Case Thermal Resistance Measurements for Ceramic Packages (Application
22、s for copies should be addressed to the American National Standards Institute, Semiconductor Equipment and Materials International, 1819 L Street, NW, 6 th floor, Washington, DC 20036 or online at http:/www.ansi.org) 3. REQUIREMENTS 3.1 Marking. Parts shall be permanently and legibly marked with the
23、 manufacturers part number as shown in 6.3 herein and as follows: A. Manufacturers name, CAGE code, or logo B. Pin 1 identifier C. ESDS identification (optional) 3.2 Unit container. The unit container shall be marked with the manufacturers part number and with items A and C (if applicable) above. 3.
24、3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, 1.5 and table I herein. 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DLADSCCVIDV62126232012MICROCIRCUITDIGITALMIXEDSIGNALMICROCONTROLLERMONOLITHICSILICONPDF

链接地址:http://www.mydoc123.com/p-689351.html