ASTM E2744-2016 Standard Test Method for Pressure Calibration of Thermal Analyzers《热分析仪压力校准的标准试验方法》.pdf
《ASTM E2744-2016 Standard Test Method for Pressure Calibration of Thermal Analyzers《热分析仪压力校准的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E2744-2016 Standard Test Method for Pressure Calibration of Thermal Analyzers《热分析仪压力校准的标准试验方法》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E2744 10 (Reapproved 2015)E2744 16Standard Test Method forPressure Calibration of Thermal Analyzers1This standard is issued under the fixed designation E2744; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of
2、 last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope Scope*1.1 This test method describes the calibration or performance confirmation of the electronic pressure signals from
3、 thermalanalysis apparatus.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 There is no ISO standard equivalent to this test method.1.4 This standard does not purport to address all of the safety concerns, if any, assoc
4、iated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D5483 Test Method for Oxidation Induction Time of Lubricating
5、 Greases by Pressure Differential Scanning CalorimetryD6186 Test Method for Oxidation Induction Time of Lubricating Oils by Pressure Differential Scanning Calorimetry (PDSC)D5720 Practice for Static Calibration of Electronic Transducer-Based Pressure Measurement Systems for Geotechnical PurposesD588
6、5 Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential ScanningCalorimetryE473 Terminology Relating to Thermal Analysis and RheologyE537 Test Method for The Thermal Stability of Chemicals by Differential Scanning CalorimetryE1142 Terminology Relating to
7、Thermophysical PropertiesE1782 Test Method for Determining Vapor Pressure by Thermal AnalysisE1858 Test Methods for Determining Oxidation Induction Time of Hydrocarbons by Differential Scanning CalorimetryE2009 Test Methods for Oxidation Onset Temperature of Hydrocarbons by Differential Scanning Cal
8、orimetryE2161 Terminology Relating to Performance Validation in Thermal Analysis and Rheology3. Terminology3.1 Definitions:3.1.1 The technical terms used in this test method are defined in Terminologies E473, E1142, and E2161, including calibration,Celsius, differential scanning calorimetry, high pr
9、essure, linearity, oxidative induction time, thermal analysis, and vapor pressure.3.2 Definitions of Terms Specific to This Standard:3.2.1 absolute pressure, npressure measured relative to zero pressure corresponding to empty space.3.2.1.1 DiscussionAbsolute pressure is atmospheric pressure plus gag
10、e pressure.3.2.2 atmospheric pressure, nthe pressure due to the weight of the atmosphere.1 This test method is under the jurisdiction ofASTM Committee E37 on Thermal Measurements and is the direct responsibility of Subcommittee E37.10 on Fundamental,Statistical and Mechanical Properties.Current edit
11、ion approved March 1, 2015Feb. 15, 2016. Published March 2015March 2016. Originally approved in 2010. Last previous edition approved in 20102015 asE2744 10. DOI:101520/E2744-10R15.10 (2015). DOI:101520/E2744-16.2 For referencedASTM standards, visit theASTM website, www.astm.org, or contactASTM Custo
12、mer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the
13、 previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.*A Summary o
14、f Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.2.1 DiscussionAtmospheric pressure varies with elevation above sea level, acceleration due to gravity and weather conditions. Sta
15、ndardatmospheric pressure is 101.325 kPa.3.2.3 barometer, nan instrument for measuring atmospheric pressure.3.2.4 gage pressure, npressure measured relative to atmospheric pressure.3.2.4.1 DiscussionZero gage pressure is equal to atmospheric pressure. Gage pressure is the difference between absolute
16、 pressure and atmosphericpressure.3.2.5 pressure, nthe force exerted to a surface per unit area.3.2.6 vacuum, npressure less than atmospheric pressure.4. Summary of Test Method4.1 The pressure (vacuum) signal generated by a thermal analyzer is compared to a gage whose performance is known andtraceab
17、le to a national metrology institute. The thermal analyzer may be said to be in conformance if the performance is withinestablished limits. Alternately, the pressure signal may be calibrated using a two-point calibration method.5. Significance and Use5.1 Most thermal analysis experiments are conduct
18、ed under ambient pressure conditions using isothermal or temperature timerate of change conditions where time or temperature is the independent parameter. Some experiments, however, are conductedunder reduced or elevated pressure conditions where pressure is an independent experimental parameter (Te
19、st Method E537).Oxidation Induction Times (Test Methods D5483, D5885, D6186, and E1858), Oxidation Onset Temperature (Test MethodE2009), and the Vapor Pressure (Test Method E1782) are other examples of experiments conducted under elevated or reducedpressure (vacuum) conditions. Since in these cases
20、pressure is an independent variable, the measurement system for this parametershall be calibrated to ensure interlaboratory reproducibility.5.2 The dependence of experimental results on pressure is usually logarithmic rather than linear.6. Apparatus6.1 Reference pressure gage with a range 1.2 times
21、the maximum value to be calibrated readable to within 0.1 % of the fullrange and performance of which has been verified using standards and procedures traceable to a national metrology institute (suchas the National Institute of Standards and Technology (NIST).NOTE 1To ensure an accurate pressure me
22、asurement, the reference pressure gage shall be placed as close as practical to the thermal analysis apparatusto be calibrated and connected to the thermal analysis apparatus with large diameter tubing such as 6.3 mm or larger especially for vacuum testing. Ensurethat there is no gas flow in the con
23、nection (for example, due to leaking) to provide a static pressure measurement.NOTE 2Additional information on pressure gages may be found in Practice D5720.6.2 A source of pressurized inert gas, typically nitrogen, with a pressure regulator, capable of adjusting the pressure suppliedto the apparatu
24、s from zero to 100 % of the gage pressure range to be calibrated, commonly 7 MPa.NOTE 3Since the calibration is performed under static flow conditions, the pressurizing gas delivery system to the thermal analysis apparatus shouldbe of small diameter (such as 1.6 mm diameter tubing) for safety consid
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME27442016STANDARDTESTMETHODFORPRESSURECALIBRATIONOFTHERMALANALYZERS 分析 压力 校准 标准 试验 方法 PDF

链接地址:http://www.mydoc123.com/p-531805.html