ASTM B862-2008 Standard Specification for Titanium and Titanium Alloy Welded Pipe.pdf
《ASTM B862-2008 Standard Specification for Titanium and Titanium Alloy Welded Pipe.pdf》由会员分享,可在线阅读,更多相关《ASTM B862-2008 Standard Specification for Titanium and Titanium Alloy Welded Pipe.pdf(9页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: B 862 08Standard Specification forTitanium and Titanium Alloy Welded Pipe1This standard is issued under the fixed designation B 862; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number i
2、n parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This specification covers the requirements for 33 gradesof tit
3、anium and titanium alloy welded pipe intended for generalcorrosion resisting and elevated temperature service as follows:1.1.1 Grade 1Unalloyed titanium, low oxygen,1.1.2 Grade 2Unalloyed titanium, standard oxygen,1.1.2.1 Grade 2HUnalloyed titanium (Grade 2 with 58ksi minimum UTS),1.1.3 Grade 3Unall
4、oyed titanium, medium oxygen,1.1.4 Grade 5Titanium alloy (6 % aluminum, 4 % vana-dium),1.1.5 Grade 7Unalloyed titanium plus 0.12 to 0.25 %palladium, standard oxygen,1.1.5.1 Grade 7HUnalloyed titanium plus 0.12 to 0.25 %palladium (Grade 7 with 58 ksi minimum UTS),1.1.6 Grade 9Titanium alloy (3 % alum
5、inum, 2.5 % va-nadium),1.1.7 Grade 11Unalloyed titanium plus 0.12 to 0.25 %palladium, low oxygen,1.1.8 Grade 12Titanium alloy (0.3 % molybdenum,0.8 % nickel),1.1.9 Grade 13Titanium alloy (0.5 % nickel, 0.05 % ru-thenium), low oxygen,1.1.10 Grade 14Titanium alloy (0.5 % nickel, 0.05 %ruthenium), stan
6、dard oxygen,1.1.11 Grade 15Titanium alloy (0.5 % nickel, 0.05 %ruthenium), medium oxygen,1.1.12 Grade 16Unalloyed titanium plus 0.04 to 0.08 %palladium, standard oxygen,1.1.12.1 Grade 16HUnalloyed titanium plus 0.04 to0.08 % palladium (Grade 16 with 58 ksi minimum UTS),1.1.13 Grade 17Unalloyed titan
7、ium plus 0.04 to 0.08 %palladium, low oxygen,1.1.14 Grade 18Titanium alloy (3 % aluminum, 2.5 %vanadium plus 0.04 to 0.08 % palladium),1.1.15 Grade 19Titanium alloy (3 % aluminum, 8 %vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),1.1.16 Grade 20Titanium alloy (3 % aluminum, 8 %vanadium, 6 %
8、chromium, 4 % zirconium, 4 % molybdenum)plus 0.04 to 0.08 % palladium,1.1.17 Grade 21Titanium alloy (15 % molybdenum, 3 %aluminum, 2.7 % niobium, 0.25 % silicon),1.1.18 Grade 23Titanium alloy (6 % aluminum, 4 %vanadium, extra low interstitial, ELI),1.1.19 Grade 24Titanium alloy (6 % aluminum, 4 %van
9、adium) plus 0.04 to 0.08 % palladium,1.1.20 Grade 25Titanium alloy (6 % aluminum, 4 %vanadium) plus 0.3 to 0.8 % nickel and 0.04 to 0.08 %palladium,1.1.21 Grade 26Unalloyed titanium plus 0.08 to 0.14 %ruthenium,1.1.21.1 Grade 26HUnalloyed titanium plus 0.08 to0.14 % ruthenium (Grade 26 with 58 ksi m
10、inimum UTS),1.1.22 Grade 27Unalloyed titanium plus 0.08 to 0.14 %ruthenium,1.1.23 Grade 28Titanium alloy (3 % aluminum, 2.5 %vanadium) plus 0.08 to 0.14 % ruthenium,1.1.24 Grade 29Titanium alloy (6 % aluminum, 4 %vanadium with extra low interstitial elements (ELI) plus 0.08to 0.14 % ruthenium,1.1.25
11、 Grade 33Titanium alloy (0.4 % nickel, 0.015 %palladium, 0.025 % ruthenium, 0.15 % chromium),1.1.26 Grade 34Titanium alloy (0.4 % nickel, 0.015 %palladium, 0.025 % ruthenium, 0.15 % chromium),1.1.27 Grade 35Titanium alloy (4.5 % aluminum, 2 %molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),1.1
12、.28 Grade 37Titanium alloy (1.5 % aluminum), and1.1.29 Grade 38Titanium alloy (4 % aluminum, 2.5 %vanadium, 1.5 % iron).NOTE 1H grade material is identical to the corresponding numericgrade (that is, Grade 2H = Grade 2) except for the higher guaranteedminimum UTS, and may always be certified as meet
13、ing the requirementsof its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H areintended primarily for pressure vessel use.The H grades were added in response to a user association request basedon its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports,where over 99 % met the 58
14、 ksi minimum UTS.1This specification is under the jurisdiction of ASTM Committee B10 onReactive and Refractory Metals and Alloys and is the direct responsibility ofSubcommittee B10.01 on Titanium.Current edition approved May 15, 2008. Published June 2008. Originallyapproved in 1995. Last previous ed
15、ition approved in 2006 as B 862 06b1.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.1.2 Pipe 8 in. NPS (nominal pipe size) and larger is mostfrequently custom made for an order. In such cases, thepurchaser carefully should consider
16、the applicability of thisspecification. Since the pipe is custom made, the purchasermay choose a wall thickness other than those in Table 1 to meetspecific operating conditions. The purchaser may also be betterserved to specify only the portions of this specification that arerequired to meet the ope
17、rating conditions (for example, anneal-ing, flattening test, chemistry, properties, etc.).1.3 Optional supplementary requirements are provided forpipe where a greater degree of testing is desired. Thesesupplementary requirements may be invoked by the purchaser,when desired, by specifying in the orde
18、r.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.2. Referenced Documents2.1 ASTM Standards:2A 370 Test Methods and Definitions for M
19、echanical Testingof Steel ProductsB 600 Guide for Descaling and Cleaning Titanium andTitanium Alloy SurfacesE8 Test Methods for Tension Testing of Metallic MaterialsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE 120 Test Methods for Chemical Analy
20、sis of Titanium andTitanium Alloys3E 1409 Test Method for Determination of Oxygen andNitrogen in Titanium and Titanium Alloys by the Inert GasFusion TechniqueE 1417 Practice for Liquid Penetrant TestingE 1447 Test Method for Determination of Hydrogen inTitanium and Titanium Alloys by the Inert Gas F
21、usionThermal Conductivity/Infrared Detection Method2.2 ANSI/ASME Standards:4B.1.20.1 Pipe Threads, General Purpose (Inch)B 36.10 Carbon, Alloy and Stainless Steel PipesB 36.19M-1985 Stainless Steel PipeASME Boiler and Pressure Vessel Code, Section VIII2.3 AWS Standard:5AWS A5.16/A5.16M-2007 Specific
22、ation for Titanium andTitanium Alloy Welding Electrodes and Rods3. Terminology3.1 Definitions:3.1.1 lot, na number of pieces of pipe of the samenominal size and wall thickness manufactured by the sameprocess from a single heat of titanium or titanium alloy andheat treated by the same furnace paramet
23、ers in the samefurnace.3.1.2 welded pipe, na hollow tubular product produced byforming flat-rolled product and seam welding to make a rightcircular cylinder.4. Ordering Information4.1 Orders for materials under this specification shall in-clude the following information as required:4.1.1 Quantity,4.
24、1.2 Grade number (Section 1 and Table 2),4.1.3 Nominal pipe size and schedule (Table 1),4.1.4 Diameter tolerance (see 9.2),4.1.5 Method of manufacture and finish (Sections 5 and 10),4.1.6 Product analysis, if required (Sections 6 and 7; Table1 and Table 3),4.1.7 Mechanical properties, (Sections 8, 1
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMB8622008STANDARDSPECIFICATIONFORTITANIUMANDTITANIUMALLOYWELDEDPIPEPDF

链接地址:http://www.mydoc123.com/p-462556.html