ASHRAE LO-09-056-2009 Case Study of Demand Shifting with Thermal Mass in Two Large Commercial Buildings《两个大型商业建筑中需要进行热质量转换的案例研究》.pdf
《ASHRAE LO-09-056-2009 Case Study of Demand Shifting with Thermal Mass in Two Large Commercial Buildings《两个大型商业建筑中需要进行热质量转换的案例研究》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE LO-09-056-2009 Case Study of Demand Shifting with Thermal Mass in Two Large Commercial Buildings《两个大型商业建筑中需要进行热质量转换的案例研究》.pdf(13页珍藏版)》请在麦多课文档分享上搜索。
1、586 2009 ASHRAEABSTRACTThe potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limit-ing in a heavy mass and a light mass
2、 building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsive-ness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kW
3、h) of the shed capac-ity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effective-ness of night pre-cooling und
4、er hot weather conditions has not been tested. Further work is required to quantify and demon-strate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate p
5、re-cooling strategies, and estimate the benefits to the customer and the utility.INTRODUCTIONThe structural mass within existing commercial buildings can be effectively used to reduce operating costs through simple adjustments of zone temperature setpoints within a range that doesnt compromise therm
6、al comfort. Generally, the building is pre-cooled at night or in the early morning at moderately low cooling setpoint temperatures (e.g., 6870F) and then the cooling setpoints are raised within the comfort zone (below 78F) during peak periods. Heating setpoints must be left unchanged or lowered to a
7、void unwanted in-creases in heating system energy. The cooled mass and higher on-peak zone setpoint temperatures lead to reduced on-peak cooling loads for the HVAC equipment, which results in lower on-peak energy and demand charges. The potential for using building thermal mass for load shifting and
8、 peak demand re-duction has been demonstrated in a number of simulation, lab-oratory, and field studies (Braun 1990; Ruud et al. 1990; Coniff 1991; Andresen and Brandemuehl 1992; Mahajan et al. 1993; Morris et al. 1994; Keeney and Braun 1997; Becker and Paciuk 2002; Xu et al. 2004). This strategy ap
9、pears to have sig-nificant potential for demand reduction if applied within an overall demand response program because the added demand reduction from different buildings can be large.In the summer of 2003, Xu conducted a pre-cooling case study at an office building in Santa Rosa, California (Xu et
10、al. 2004). The research team found that a simple demand limiting strategy performed well in this building. This strategy in-volved maintaining zone temperatures at the lower end of the comfort range (70F) during the occupied hours before the peak period (8 a.m. to 2 p.m.) and floating the zone tempe
11、ra-tures up to the high end of the comfort range (78F) during the peak period (2 p.m. to 5 p.m.). With this strategy, the chiller power was reduced by 80 to 100% (1 to 2.3 W/ft2) during peak hours without having any thermal comfort complaints submit-ted to the operations staff (Xu et al. 2004). In t
12、he summer of 2004, Xu conducted pre-cooling tests along with online real-time comfort surveys to determine occupant reactions to the thermal conditions in the Santa Rose building and in a Sacra-mento office building. The results of the comfort surveys in two large test buildings indicate that occupa
13、nt comfort was Case Study of Demand Shifting with Thermal Mass in Two Large Commercial BuildingsPeng Xu, PE, PhDPeng Xu is a scientist and mechanical engineer at the Lawrence Berkeley National Laboratory, Berkeley, CA.LO-09-056 2009, American Society of Heating, Refrigerating and Air-Conditioning En
14、gineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions 2009, vol. 115, part 2. For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAEs prior written permission.ASHRAE Transactions 587maintained during th
15、e pre-cooling tests as long as the zone temperatures were between 70F and 76F (Xu 2006).Although these studies were quite successful and a large peak demand shed was achieved while maintaining occupant comfort, some key questions remained unanswered, including:What are the metrics of the building th
16、ermal mass and how are they determined? Thermal mass metrics refer to how fast the passive thermal storage can be charged and discharged. One example is the time constant for the whole building temperature change when the HVAC system is off.How can thermal mass be discharged more efficiently and mor
17、e smoothly with no rebound? Rebound hap-pens when the thermal storage is depleted before the end of the demand period and electricity demand reaches new high.How can a buildings pre-cooling potential be assessed and the potential economic savings be quickly deter-mined?What will be the comfort react
18、ion if the occupants are informed in advance of the test?What will be the occupants reaction if pre-cooling per-sists for a longer period and they have opportunities to adjust to the new thermal environment?The research team addressed several of these questions in this study and will address others
19、in subsequent studies in a multi-year effort to understand pre-cooling thermal mass as a Demand Response (DR) strategy for commercial buildings.The team systematically conducted more field tests for a longer period in two large commercial buildings before (Xu 2006). In that study, no comfort data we
20、re collected during the hot days and all tests were blind tests where the occupants were not informed in advance. If they were informed of the precooling tests and expected a temperature change, they might change their clothing level accordingly. Akin to commuting by mass transit or bicycle on a reg
21、ional air quality “Spare the Air day,” occupants may be willing to adjust to temporarily inconvenient or uncomfortable conditions that they know have long-term benefits. Since advance notice was thought to bias the tests, the tests in this study were conducted without notifying the occupants.FIELD T
22、ESTSTo address the questions listed above, the research team selected two buildings that had participated in the Auto-CPP (Critical Peak Pricing) pilot program, a study to demonstrate the capability of automated demand shed in buildings on CPP days (Piette et al. 2006). The selection was based on lo
23、cation, technical feasibility, and owner intentions to participate. The two buildings selected were one museum (CSSC) and one office (OSF), both in Oakland, California. A strategy similar to the demand-shifting strategy implemented before (Xu 2006), based on zone temperature reset, was used in both
24、buildings.There were several reasons for picking these two build-ings. First, they were both medium-sized buildings with full direct digital control (DDC) and so the zone temperatures set points could be changed directly. Second, CSSC is a heavy mass building and a large portion of the floor area is
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAELO090562009CASESTUDYOFDEMANDSHIFTINGWITHTHERMALMASSINTWOLARGECOMMERCIALBUILDINGS 两个 大型 商业 建筑 需要

链接地址:http://www.mydoc123.com/p-455342.html