ANSI ASTM D6424 REV A-2004 Standard Practice for Octane Rating Naturally Aspirated Spark Ignition Aircraft Engines.pdf
《ANSI ASTM D6424 REV A-2004 Standard Practice for Octane Rating Naturally Aspirated Spark Ignition Aircraft Engines.pdf》由会员分享,可在线阅读,更多相关《ANSI ASTM D6424 REV A-2004 Standard Practice for Octane Rating Naturally Aspirated Spark Ignition Aircraft Engines.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D6424 04a (Reapproved 2014) An American National StandardStandard Practice forOctane Rating Naturally Aspirated Spark Ignition AircraftEngines1This standard is issued under the fixed designation D6424; the number immediately following the designation indicates the year oforiginal adopti
2、on or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers ground based octane rating proce-dures for naturally
3、aspirated spark ignition aircraft enginesusing primary reference fuels.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine th
4、e applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D2700 Test Method for Motor Octane Number of Spark-Ignition Engine Fuel3. Terminology3.1 Definitions:3.1.1 amine number of reference fuels above 100, AN,ndetermined in terms of the weight percent of3-m
5、ethylphenylamine in reference grade isooctane (2,2,4trimethylpentane). For example, 5 % of 3methylphenylam-ine in reference grade isooctane has an amine number of 105(AN 105). No attempt has been made to correlate performancenumber of leaded reference fuels to the amine number ofunleaded reference f
6、uels, and none is implied.3.1.2 engine motor octane requirementone full motoroctane number greater than the maximum motor octane num-ber that results in knock (graphic knock level descriptions canbe seen in Annex A1). For example, a test engine knocks onprimary reference fuels with 96 and 97 motor o
7、ctane numbers.The test engine does not knock on a primary reference fuelwith a 98 motor octane number. The maximum motor octanenumber that results in knock is 97, so the motor octanerequirement is 98.3.1.3 full richcondition in which the mixture control is atthe full stop position with the fuel flow
8、 within manufacturersrecommended settings.3.1.4 house fuel, nfor octane rating, an unleaded, straighthydrocarbon fuel used for engine warm-up and all non-octanerating testing.3.1.5 knock, nin an aircraft spark ignition engine, abnor-mal combustion caused by autoignition of the air/fuel mixture.3.1.6
9、 knock condition, nfor octane rating, when the knockintensity in any cylinder is light knock or greater as describedin Annex A1.3.1.7 knock number, n for octane rating, a numericalquantification of knock intensity.3.1.8 motor octane number of primary reference fuels above100determined in terms of th
10、e number of millilitres oftetraethyl lead in isooctane.3.1.9 motor octane number of primary reference fuels from0 to 100the volume % of isooctane (equals 100.0) in a blendwith n-heptane (equals 0.0).3.1.10 naturally aspirated aircraft engine, naircraft pistonengine that breathes without forced means
11、 from either turbo-chargers or superchargers.3.1.11 no-knock condition, nfor octane rating, when thecombustion instability in all cylinders is less than light knock.Refer to Annex A1 for description of knock intensity.3.1.12 peak EGT, nfor octane rating, as the mixture ismanually leaned from a state
12、 rich of stoichiometric, the exhaustgas temperature will increase with the removal of excess fuel.As the mixture is continually leaned, a peak temperature willbe attained, after which continued leaning will result in lowerexhaust gas temperatures.3.1.13 primary reference fuels, nfor octane rating,bl
13、ended fuels of reference grade isooctane and n-heptane.3.1.14 stable engine conditions, nfor octane rating, cyl-inder head temperatures change less than 5C (9F) during a1-min period. Any changes or minor adjustments to throttle,1This practice is under the jurisdiction of ASTM Committee D02 on Petrol
14、eumProducts, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-mittee D02.J0.02 on Spark and Compression Ignition Aviation Engine Fuels.Current edition approved Dec. 15, 2014. Published February 2015. Originallyapproved in 1999. Last previous edition approved in 2010 as D6424 0
15、4a (2010).DOI: 10.1520/D6424-04AR14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM Internatio
16、nal, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1mixture, or engine conditions mandate restarting the clock fordetermining stable conditions.3.2 Acronyms:3.2.1 CHTcylinder head temperature.3.2.2 EGTexhaust gas temperature.3.2.3 inHginches of mercury.3.2.4 MAPm
17、anifold absolute pressure.3.2.5 mmHgmillimetres of mercury.3.2.6 MONmotor octane number.3.2.7 PRFprimary reference fuel.3.2.8 psigpounds per square inch gauge.3.2.9 rpmrevolutions per minute.3.2.10 TDCtop dead center.4. Summary of Practice4.1 A recently overhauled, remanufactured, or new, natu-rally
18、 aspirated aircraft engine is octane rated, using PRFs, todetermine the minimum motor octane requirement. Minimummotor octane requirement is defined as one number above thehighest MON in which knock was detected. The engine istested at three or more of the worst power points subject todetonation beh
19、avior. These points usually involve high mani-fold pressures. At the very least, takeoff power, a maximumcontinuous or climb power, and a cruise configuration shall betested. Takeoff power and climb power are tested under fullrich mixture conditions, and cruise power is tested under fullrich and lea
20、n mixture configurations in 5 % increment reduc-tions from full rich fuel flow. Engine operating temperaturesand oil temperatures are kept at maximum allowable limits,while induction and cooling air temperatures are maintained atextreme hot day conditions for severe case testing.4.2 Octane ratings a
21、re determined under stable engineconditions using PRFs of known MON.4.3 Knock sensor installation and knock quantification aredescribed in Annex A1.5. Significance and Use5.1 This practice is used as a basis for determining theminimum motor octane requirement of naturally aspiratedaircraft engines b
22、y use of PRFs.5.2 Results from standardized octane ratings will play animportant role in defining the actual octane requirement of agiven aircraft engine, which can be applied in an effort todetermine a fleet requirement.6. Apparatus6.1 Instrumentation:6.1.1 The engine shall be equipped with the fol
23、lowinginstrumentation, which shall be accurate within 62 % of fullscale unless noted otherwise.6.1.1.1 Absolute Manifold Pressure TransducerLocationof MAP sensor shall conform to engine manufacturers speci-fied location. Manifold pressures shall be measured with anaccuracy of less than 2.5 mmHg and
24、recorded to ensure properengine behavior and repeatability.6.1.1.2 Cooling Air Pressure Transducer, located so as todetermine the pressure within the cowling.6.1.1.3 Cooling Air Temperature Sensor, located eitherwithin the cowling or at the entrance to the cowling. If athermocouple is utilized, it s
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASTMD6424REVA2004STANDARDPRACTICEFOROCTANERATINGNATURALLYASPIRATEDSPARKIGNITIONAIRCRAFTENGINESPDF

链接地址:http://www.mydoc123.com/p-432443.html