ACI 351.3R-2004 Foundations for Dynamic Equipment《动态设备基础》.pdf
《ACI 351.3R-2004 Foundations for Dynamic Equipment《动态设备基础》.pdf》由会员分享,可在线阅读,更多相关《ACI 351.3R-2004 Foundations for Dynamic Equipment《动态设备基础》.pdf(63页珍藏版)》请在麦多课文档分享上搜索。
1、ACI 351.3R-04 became effective May 3, 2004.Copyright 2004, American Concrete Institute.All rights reserved including rights of reproduction and use in any form or by anymeans, including the making of copies by any photo process, or by electronic ormechanical device, printed, written, or oral, or rec
2、ording for sound or visual reproduc-tion or for use in any knowledge or retrieval system or device, unless permission inwriting is obtained from the copyright proprietors.1ACI Committee Reports, Guides, Manuals, and Commentariesare intended for guidance in planning, designing, executing,and inspecti
3、ng construction. This document is intended for theuse of individuals who are competent to evaluate thesignificance and limitations of its content and recommendationsand who will accept responsibility for the application of thematerial it contains. The American Concrete Institute disclaimsany and all
4、 responsibility for the stated principles. The Instituteshall not be liable for any loss or damage arising therefrom.Reference to this document shall not be made in contractdocuments. If items found in this document are desired by theArchitect/Engineer to be a part of the contract documents, theysha
5、ll be restated in mandatory language for incorporation bythe Architect/Engineer.ACI 351.3R-04(Reapproved 2011)This report presents to industry practitioners the various design criteriaand methods and procedures of analysis, design, and construction appliedto dynamic equipment foundations.Keywords: a
6、mplitude; concrete; foundation; reinforcement; vibration.CONTENTSChapter 1Introduction, p. 21.1Background1.2Purpose1.3Scope1.4NotationChapter 2Foundation and machine types, p. 42.1General considerations2.2Machine types2.3Foundation typesChapter 3Design criteria, p. 73.1Overview of design criteria3.2
7、Foundation and equipment loads3.3Dynamic soil properties3.4Vibration performance criteria3.5Concrete performance criteria3.6Performance criteria for machine-mounting systems3.7Method for estimating inertia forces from multi-cylinder machinesChapter 4Design methods and materials, p. 264.1Overview of
8、design methods4.2Impedance provided by the supporting media4.3Vibration analysis4.4Structural foundation design and materials4.5Use of isolation systems4.6Repairing and upgrading foundations4.7Sample impedance calculationsChapter 5Construction considerations, p. 535.1Subsurface preparation and impro
9、vement5.2Foundation placement tolerances5.3Forms and shores5.4Sequence of construction and construction joints5.5Equipment installation and setting5.6Grouting5.7Concrete materials5.8Quality controlWilliam L. Bounds*Erick Larson Andrew Rossi*Anthony J. SmalleyWilliam D. Brant Fred G. Louis Robert L.
10、Rowan, Jr.Philip A. SmithShu-jin Fang Jack Moll William E. Rushing, Jr. W. Tod SuttonShraddhakar Harsh Ira W. Pearce Abdul Hai Sheikh F. Alan WileyCharles S. Hughes*Members of the editorial subcommittee.Chair of subcommittee that prepared this report.Past Chair.James P. Lee*ChairYelena S. Golod*Secr
11、etaryFoundations for Dynamic EquipmentReported by ACI Committee 351351.3R-2 ACI COMMITTEE REPORTChapter 6References, p. 351.3R-576.1Referenced standards and reports6.2Cited references6.3Software sources and other references6.4TerminologyCHAPTER 1INTRODUCTION1.1BackgroundHeavy machinery with reciproc
12、ating, impacting, or rotatingmasses requires a support system that can resist dynamicforces and the resulting vibrations. When excessive, suchvibrations may be detrimental to the machinery, its supportsystem, and any operating personnel subjected to them.Many engineers with varying backgrounds are e
13、ngaged inthe analysis, design, construction, maintenance, and repair ofmachine foundations. Therefore, it is important that theowner/operator, geotechnical engineer, structural engineer,and equipment supplier collaborate during the designprocess. Each of these participants has inputs and concernstha
14、t are important and should be effectively communicatedwith each other, especially considering that machine foundationdesign procedures and criteria are not covered in buildingcodes and national standards. Some firms and individualshave developed their own standards and specifications as aresult of r
15、esearch and development activities, field studies,or many years of successful engineering or constructionpractices. Unfortunately, most of these standards are notavailable to many practitioners. As an engineering aid tothose persons engaged in the design of foundations formachinery, the committee de
16、veloped this document, whichpresents many current practices for dynamic equipmentfoundation engineering and construction.1.2PurposeThe committee presents various design criteria andmethods and procedures of analysis, design, and constructioncurrently applied to dynamic equipment foundations byindust
17、ry practitioners.This document provides general guidance with referencematerials, rather than specifying requirements for adequatedesign. Where the document mentions multiple designmethods and criteria in use, factors, which may influence thechoice, are presented.1.3ScopeThis document is limited in
18、scope to the engineering,construction, repair, and upgrade of dynamic equipmentfoundations. For the purposes of this document, dynamicequipment includes the following:1. Rotating machinery;2. Reciprocating machinery; and3. Impact or impulsive machinery.1.4NotationC = damping matrixK = stiffness matr
19、ixK* = impedance with respect to CGk = reduced stiffness matrixkj = battered pile stiffness matrixM = mass matrixm = reduced mass matrixT = transformation matrix for battered pileir = matrix of interaction factors between anytwo piles with diagonal terms ii= 1A = displacement amplitudeAhead, Acrank=
20、 head and crank areas, in.2(mm2)Ap= cross-sectional area of the pilea, b = plan dimensions of a rectangular foundationao= dimensionless frequencyBc= cylinder bore diameter, in. (mm)Bi= mass ratio for the i-th directionBr= ram weight, tons (kN)b1, b2= 0.425 and 0.687, Eq. (4.15d)cgi= damping of pile
21、group in the i-th directionci= damping constant for the i-th directionci*(adj) = damping in the i-th direction adjusted formaterial dampingcij= equivalent viscous damping of pile j in thei-th directionDi= damping ratio for the i-th directionDrod= rod diameter, in. (mm)d = pile diameterdn= nominal bo
22、lt diameter, in. (m)ds= displacement of the slide, in. (mm)Ep= Youngs modulus of the pileem= mass eccentricity, in. (mm)ev= void ratioF = time varying force vectorF1= correction factorFblock= the force acting outwards on the block fromwhich concrete stresses should be calcu-lated, lbf (N)(Fbolt)CHG=
23、 the force to be restrained by friction at thecross head guide tie-down bolts, lbf (N)(Fbolt)frame= the force to be restrained by friction at theframe tie-down bolts, lbf (N)FD= damper forceFGMAX= maximum horizontal gas force on a throwor cylinder, lbf (N)FIMAX= maximum horizontal inertia force on a
24、throw or cylinder, lbf (N)Fo= dynamic force amplitude (zero-to-peak),lbf (N)Fr= maximum horizontal dynamic forceFred= a force reduction factor with suggestedvalue of 2, to account for the fraction ofindividual cylinder load carried by thecompressor frame (“frame rigidityfactor”)Frod= force acting on
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ACI3513R2004FOUNDATIONSFORDYNAMICEQUIPMENT 动态 设备 基础 PDF

链接地址:http://www.mydoc123.com/p-401234.html