(全国通用版)2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案理.doc
《(全国通用版)2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案理.doc》由会员分享,可在线阅读,更多相关《(全国通用版)2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案理.doc(24页珍藏版)》请在麦多课文档分享上搜索。
1、1第 4 讲 导数的热点问题考情考向分析 利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数零点、方程根及不等式相结合,难度较大热点一 利用导数证明不等式用导数证明不等式是导数的应用之一,可以间接考查用导数判定函数的单调性或求函数的最值,以及构造函数解题的能力例 1 (2018湖南长沙雅礼中学、河南省实验中学联考)已知函数 f(x) ae2x aex xex(a0,e2.718,e 为自然对数的底数),若 f(x)0 对于 xR 恒成立(1)求实数 a 的值;(2)证明: f(x)存在唯一极大值点 x0,且 f(x0)0, g(x)在(0,)上单调递增, g(x) g(0)0,故 a
2、1.(2)证明 当 a1 时, f(x)e 2xe x xex,f( x)e x(2ex x2)令 h(x)2e x x2,则 h( x)2e x1,当 x(,ln 2)时, h( x)0, h(x)在(ln 2,)上为增函数, h(1)0,在(2,1)上存在 x x0满足 h(x0)0, h(x)在(,ln 2)上为减函数,当 x(, x0)时, h(x)0,即 f( x)0, f(x)在(, x0)上为增函数,当 x( x0,ln 2)时, h(x)h(0)0,即 f( x)0, f(x)在(0,)上为增函数, f(x)在(ln 2,)上只有一个极小值点 0,综上可知, f(x)存在唯一的
3、极大值点 x0,且 x0(2,1) h(x0)0,2 0ex x020, f(x0) 02x x0 2 (x01) , x0(2,1),(x0 22 ) (x0 22 ) x20 2x04当 x(2,1)时, 0),1x ax 1x当 a0 时,则 f( x)0 时,则当 x 时, f( x)0, f(x)单调递增,(1a, )当 x 时, f( x)0 时, f(x)在 上单调递减,在 上单调递增(0,1a) (1a, )(2)证明 令 g(x) f(x)2 ax xeax1 xeax1 axln x,则 g( x)e ax1 axeax1 a1x( ax1) (x0),(eax 11x)
4、ax 1xeax 1 1x设 r(x) xeax1 1( x0),则 r( x)(1 ax)eax1 (x0),e ax1 0,当 x 时, r( x)0, r(x)单调递增;(0, 1a)当 x 时, r( x) 时, g( x)0,1a 1a g(x)在 上单调递减,在 上单调递增,(0, 1a) ( 1a, )4 g(x)min g ,(1a)设 t ,1a (0, e2则 g h(t) ln t1(00,且函数 f(x)在区间0,)内单调递增,求实数 a 的取值范围;(2)若 0 a),23 1x a记 h(x) f( x),则 h( x)e x 0,1x a2知 f( x)在区间 内
5、单调递增( a, )又 f(0)1 0,1a 1a 1 f( x)在区间 内存在唯一的零点 x0,( a, )即 f( x0) 0e 0,1x0 a于是 0 , x0ln .1x0 a (x0 a)当 ax0时, f( x)0, f(x)单调递增 f(x)min f(x0) 0e2 aln (x0 a) 2 a x0 x0 a 3 a23 a,1x0 a 1x0 a当且仅当 x0 a1 时,取等号由 00,23 f(x)min f(x0)0,即函数 f(x)没有零点思维升华 (1)函数 y f(x) k 的零点问题,可转化为函数 y f(x)和直线 y k 的交点问6题(2)研究函数 y f(
6、x)的值域,不仅要看最值,而且要观察随 x 值的变化 y 值的变化趋势7跟踪演练 2 (2018全国)已知函数 f(x)e x ax2.(1)若 a1,证明:当 x0 时, f(x)1;(2)若 f(x)在(0,)上只有一个零点,求 a.(1)证明 当 a1 时, f(x)1 等价于( x21)e x10.设函数 g(x)( x21)e x1,则 g( x)( x22 x1)e x( x1) 2e x.当 x1 时, g( x)0, h(x)没有零点;()当 a0 时, h( x) ax(x2)e x.当 x(0,2)时, h( x)0.所以 h(x)在(0,2)上单调递减,在(2,)上单调递
7、增故 h(2)1 是 h(x)在(0,)上的最小值4ae2若 h(2)0,即 a ,e24因为 h(0)1,所以 h(x)在(0,2)上有一个零点;由(1)知,当 x0 时,e xx2,所以 h(4a)1 1 1 1 0,故 h(x)16a3e4a 16a3e2a2 16a32a4 1a在(2,4 a)上有一个零点因此 h(x)在(0,)上有两个零点综上,当 f(x)在(0,)上只有一个零点时, a .e24热点三 利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函数,然后通过研究这个函数的性质,
8、从而找到变量在什么情况下可以达到目标最优例 3 罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距 m 米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为 32 万元,距离为 x 米的相邻两墩之间的桥面工程费用为(2 )x 万元假设桥墩等距离分布,所有桥墩都视为点,且不考x8虑其他因素,记余下工程的费用为 y 万元(1)试写出 y 关于 x 的函数关系式;(2)当 m96 米时,需新建多少个桥墩才能使余下工程的费用 y 最小?解 (1)设需新建 n 个桥墩,则( n1) x m,即 n 1.mx所以 y f(x)32 n( n1)(2 )xx32 (2 )x(mx 1)
9、mx x m 2m32(00, f(x)在区间(16,96)内为增函数,所以 f(x)在 x16 处取得最小值,此时 n 15.9616答 需新建 5 个桥墩才能使余下工程的费用 y 最小思维升华 利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式 y f(x)(2)求导:求函数的导数 f( x),解方程 f( x)0.(3)求最值:比较函数在区间端点和使 f( x)0 的点的函数值的大小,最大(小)者为最大(小)值(4)作答:回归实际问题作答跟踪演练 3 图 1 是某种称为“凹槽”的机械部件的示意图,图
10、2 是凹槽的横截面(阴影部分)示意图,其中四边形 ABCD 是矩形,弧 CmD 是半圆,凹槽的横截面的周长为 4.若凹槽的强度 T 等于横截面的面积 S 与边 AB 的乘积,设 AB2 x, BC y.9(1)写出 y 关于 x 的函数表达式,并指出 x 的取值范围;(2)求当 x 取何值时,凹槽的强度最大解 (1)易知半圆 CmD 的半径为 x,故半圆 CmD 的弧长为 x.所以 42 x2 y x,得 y .4 2 x2依题意知 00, T 为关于 x 的增函数;169 12当 0,则由 f( x)0,得 xln a.当 x(,ln a)时, f( x)0.10所以 f(x)在(,ln a
11、)上单调递减,在(ln a,)上单调递增(2)(i)若 a0,由(1)知, f(x)至多有一个零点(ii)若 a0,由(1)知,当 xln a 时, f(x)取得最小值,最小值为 f(ln a)1 ln 1aa.当 a1 时,由于 f(ln a)0,故 f(x)只有一个零点;当 a(1,)时,由于 1 ln a0,1a即 f(ln a)0,故 f(x)没有零点;当 a(0,1)时,1 ln a2e 2 20,故 f(x)在(,ln a)上有一个零点设正整数 n0满足 n0ln ,(3a 1)则 f(n0) e(a a2) n0e n02 n00.由于 ln ln a,(3a 1)因此 f(x)
12、在(ln a,)上有一个零点综上, a 的取值范围为(0,1)押题预测已知 f(x) asin x, g(x)ln x,其中 aR, y g1 (x)是 y g(x)的反函数(1)若 00, m0 恒成立,求满足条件的最小整数 b 的值押题依据 有关导数的综合应用试题多考查导数的几何意义、导数与函数的单调性、导数与不等式等基础知识和基本方法,考查分类整合思想、转化与化归思想等数学思想方法本题的命制正是根据这个要求进行的,全面考查了考生综合求解问题的能力(1)证明 由题意知 G(x) asin(1 x)ln x,G( x) acos(1 x)(x0),1x当 x(0,1),01,00,11故函数
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用版 2019 高考 数学 二轮 复习 专题 函数 导数 热点问题 学案理 DOC
