2018版高中数学第二章概率2.2超几何分布学案苏教版选修2_3.doc
《2018版高中数学第二章概率2.2超几何分布学案苏教版选修2_3.doc》由会员分享,可在线阅读,更多相关《2018版高中数学第二章概率2.2超几何分布学案苏教版选修2_3.doc(10页珍藏版)》请在麦多课文档分享上搜索。
1、- 1 -2.2 超几何分布学习目标 1.了解超几何分布的实际背景.2.理解超几何分布的特征.3.能用超几何分布这一概率模型解决相关问题知识点 超几何分布思考 从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量 X 表示所选 3 人中女生的人数(1)X 的所有可能值是什么?(2)X 的概率分布是什么?梳理 超几何分布(1)概念:一般地,若一个随机变量 X 的分布列为 P(X r) ,其中CrMCn rN MCnNr0,1,2,3, l, lmin( n, M),则称 X 服从超几何分布(2)记法: X 服从超几何分布,记为_,并将 P(X r)_记为H(r; n, M, N)(
2、3)含义:在 H(r; n, M, N)中, r, n, M, N 的含义:特别提醒:(1)超几何分布的模型特点超几何分布中的正品、次品也可以理解为黑、白,男、女等有明显差异的两部分超几何分布中“ X k”的含义是“取出的 n 件产品中恰好有 k 件次品” (2)超几何分布的特征超几何分布的抽取是不放回的超几何分布本质上还是这一事件在该随机试验中发生的次数与总次数的比类型一 超几何分布求概率例 1 从放有 10 个红球与 15 个白球的暗箱中,随意摸出 5 个球,规定取到一个白球得 1 分,- 2 -一个红球得 2 分,求某人摸出 5 个球,恰好得 7 分的概率反思与感悟 解答此类问题的关键是
3、先分析随机变量是否满足超几何分布若满足,则直接利用公式解决;若不满足,则应借助相应概率公式求解跟踪训练 1 在元旦晚会上,数学老师设计了一个摸奖游戏,在一个口袋中装有 10 个红球和20 个白球,这些球除颜色外完全相同,从中任意摸出 5 个球,至少摸到 3 个红球中奖,求中奖的概率(结果保留两位小数)类型二 超几何分布求概率分布引申探究在本例条件下,若记取到白球的个数为随机变量 ,求随机变量 的概率分布例 2 一- 3 -个袋中装有 6 个形状大小完全相同的小球,其中红球有 3 个,编号为 1,2,3;黑球有 2 个,编号为 1,2;白球有 1 个,编号为 1.现从袋中一次随机抽取 3 个球(
4、1)求取出的 3 个球的颜色都不相同的概率;(2)记取得 1 号球的个数为随机变量 X,求随机变量 X 的概率分布反思与感悟 超几何分布的求解步骤(1)辨模型:结合实际情景分析所求概率分布问题是否具有明显的两部分组成,如“男生、女生” , “正品、次品” “优劣”等,或可转化为明显的两部分具有该特征的概率模型为超几何分布模型(2)算概率:可以直接借助公式 P(X r) 求解,也可以利用排列组合及概率的知识CrMCn rN MCnN求解,需注意借助公式求解时应理解参数 M, N, n, r 的含义(3)列分布表:把求得的概率值通过表格表示出来跟踪训练 2 从 5 名男生和 3 名女生中任选 3
5、人参加奥运会火炬接力活动若随机变量 X 表示所选 3 人中女生的人数,求 X 的概率分布及 P(X2)- 4 -类型三 超几何分布的综合应用例 3 在 10 件产品中,有 3 件一等品,4 件二等品,3 件三等品从这 10 件产品中任取 3件求:(1)取出的 3 件产品中一等品件数 X 的概率分布;(2)取出的 3 件产品中一等品件数多于二等品件数的概率反思与感悟 识别超几何分布的三大标准(1)总数为 N 件的物品只分为两类: M(M N)件甲类(或次品), N M 件乙类(或正品)(2)从 N 件物品中行取 n(n N)件物品必须采用不放回抽样(3)随机变量 X 表示从 N 件物品中任取 n
6、(n N)件物品,其中所含甲类物品(或次品)的件数跟踪训练 3 袋中装着标有数字 1,2,3,4,5 的小球各 2 个,从袋中任取 3 个小球,按 3 个小球上最大数字的 9 倍计分,每个小球被取出的可能性相等,用 X 表示取出的 3 个小球上的最大数字,求:(1)取出的 3 个小球上的数字互不相同的概率;(2)随机变量 X 的概率分布;(3)计算介于 20 分到 40 分之间的概率- 5 -1盒中有 4 个白球,5 个红球,从中任取 3 个球,则取出 1 个白球和 2 个红球的概率是_2有 10 位同学,其中男生 6 位,女生 4 位,从中任选 3 人参加数学竞赛用 X 表示女生人数,则概率
7、 P(X2)_.3从 4 名男生和 2 名女生中任选 3 人参加数学竞赛,则所选 3 人中,女生的人数不超过 1人的概率为_- 6 -4从 1,2,3,4,5 中任取 3 个数,记最大的数为 ,则 P( 4)_.5一个盒子里装有 4 张大小形状完全相同的卡片,分别标有数字 2,3,4,5;另一个盒子里也装有 4 张大小形状完全相同的卡片,分别标有数字 3,4,5,6.现从一个盒子里任取一张卡片,其上面的数记为 x,再从另一个盒子里任取一张卡片,其上面的数记为 y,记随机变量 x y,求 的概率分布1超几何分布的判断判断随机变量是否服从超几何分布,可以从以下两个方面判断:一是超几何分布描述的是不
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中数学 第二 概率 22 几何 分布 学案苏教版 选修 _3DOC
