ASTM D3284-2005(2011) Standard Practice for Combustible Gases in the Gas Space of Electrical Apparatus Using Portable Meters《用便携式仪表测定电气装置气体空间中可燃性气体的标准试验方法》.pdf
《ASTM D3284-2005(2011) Standard Practice for Combustible Gases in the Gas Space of Electrical Apparatus Using Portable Meters《用便携式仪表测定电气装置气体空间中可燃性气体的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D3284-2005(2011) Standard Practice for Combustible Gases in the Gas Space of Electrical Apparatus Using Portable Meters《用便携式仪表测定电气装置气体空间中可燃性气体的标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D3284 05 (Reapproved 2011)Standard Practice forCombustible Gases in the Gas Space of ElectricalApparatus Using Portable Meters1This standard is issued under the fixed designation D3284; the number immediately following the designation indicates the year oforiginal adoption or, in the ca
2、se of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This field practice covers the detection and estimation ofcombustible gases in the gas bla
3、nket above the oil or in gasdetector relays in transformers using portable instruments. It isapplicable only with transformers using mineral oil as thedielectric fluid. Gases dissolved in the oil and noncombustiblegases are not determined. A method of calibrating the instru-ments with a known gas mi
4、xture is included.1.2 This practice affords a semi-quantitative estimate of thetotal combustible gases present in a gas mixture. If a moreaccurate determination of the total amount of combustiblegases or a quantitative determination of the individual compo-nents is desired, use a laboratory analytic
5、al method, such asTest Method D3612.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limi
6、tations prior to use. Specific precau-tionary statements are given in Section 7.2. Referenced Documents2.1 ASTM Standards:2D3612 Test Method for Analysis of Gases Dissolved inElectrical Insulating Oil by Gas Chromatography2.2 IEEE Standard:3C57.104 Guide for the Interpretation of Gases Generated inO
7、il-Immersed Transformers3. Summary of Practice3.1 A sample of gas is diluted to a fixed ratio with air andintroduced into the meter at a pressure of approximately oneatmosphere. Any combustible gases present are catalyticallyoxidized on the surface of a sensor which is an element of aWheatstone brid
8、ge. When combustible gases oxidize on thesurface, they increase the temperature of the element, whichchanges its resistance and upsets the balance of the bridge.3.2 The change in the resistance of the indicating elementsin the bridge circuit is indicated on a meter, which is usuallycalibrated to rea
9、d in percent total combustible gas.4. Significance and Use4.1 Arcing, partial discharge, and localized overheating inthe insulation system of transformers result in chemical de-composition of the insulating oil and other insulating materials.This may generate various gases, some of which are combus-
10、tible. Typically, gases are generated in the oil and thenpartitioned into the gas space according to their individualsolubilities. Gases which are highly oil-soluble, such as acety-lene, may not be in significant quantities in the gas space untilan incipient fault has progressed to a very serious co
11、ndition orfailure of the transformer. Gases such as carbon monoxide andhydrogen which have low solubilities in oil can make up alarge fraction of the combustible gases in the gas space.Detection of these gases is frequently the first availableindication of a malfunction. Portable combustible gas met
12、ersare a convenient means of detecting the presence of generatedgases.4.2 Normal operation of a transformer may result in theformation of some combustible gases. The detection of anincipient fault by this method involves an evaluation of theamount of combustible gases present, the rate of generation
13、 ofthese gases, and their rate of escape from the transformer. Referto IEEE C57.104 for detailed information on interpretation ofgassing in transformers.5. Interferences5.1 In this practice it is essential that sufficient oxygen bepresent in the gas mixture to oxidize the combustible gases.Since the
14、 gas blanket in a transformer is usually an inert gas, itis necessary to dilute the sample gas with a known amount ofair. This is usually accomplished by either introducing air andthe sample gas into the instrument in known ratios throughfixed orifices, or by mixing known quantities of air and test1
15、This practice is under the jurisdiction of ASTM Committee D27 on ElectricalInsulating Liquids and Gases and is the direct responsibility of SubcommitteeD27.03 on Analytical Tests.Current edition approved May 1, 2011. Published June 2011. Originallyapproved in 1974. Last previous edition approved in
16、2005 as D3284 05. DOI:10.1520/D3284-05R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Ins
17、titute of Electrical and Electronics Engineers, Inc. (IEEE),445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-1331, http:/www.ieee.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.specimen externally by displacement over water bef
18、ore intro-duction into the instrument. The working range of theseinstruments is between the low limit of sensitivity and aboutthe lower explosive limit. They generally read off-scale at thehigh end between the lower explosive limit and the upperexplosive limit and may indicate zero when the combusti
19、blegas content is above the upper explosive limit.5.2 Contamination of the sensor can seriously impair thesensitivity and response of the meter. This loss of responsedoes not affect the normal balancing of the bridge circuit, andis not detected by an electrical check of the instrument. It is,therefo
20、re, essential to check and calibrate the instrumentfrequently against a standard combustible gas mixture.5.3 Since each combustible gas has its own individualinstrument response, the values determined by an instrumentare dependent upon the kind of combustible gas used forcalibration. In order to com
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD328420052011STANDARDPRACTICEFORCOMBUSTIBLEGASESINTHEGASSPACEOFELECTRICALAPPARATUSUSINGPORTABLEMETERS

链接地址:http://www.mydoc123.com/p-514490.html