ASTM C1099-2007(2012) Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf
《ASTM C1099-2007(2012) Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM C1099-2007(2012) Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: C1099 07 (Reapproved 2012)Standard Test Method forModulus of Rupture of Carbon-Containing RefractoryMaterials at Elevated Temperatures1This standard is issued under the fixed designation C1099; the number immediately following the designation indicates the year oforiginal adoption or, i
2、n the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the modu-lus of rupture of carbon-con
3、taining refractories at elevatedtemperatures in air.1.2 The values stated in inch-pound units and degreesFahrenheit are to be regarded as standard. The values given inparentheses are for information only.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with
4、 its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 5.2. Referenced Documents2.1 ASTM Standards:2C583 Test Method for M
5、odulus of Rupture of RefractoryMaterials at Elevated TemperaturesE220 Test Method for Calibration of Thermocouples ByComparison Techniques2.2 ISO Standard:ISO Recommendation 5013 Determination of the HotModulus of Rupture of Shaped and Unshaped Dense andInsulating Refractory Products33. Significance
6、 and Use3.1 The modulus of rupture of carbon-containing refracto-ries at elevated temperatures has become accepted as a usefulmeasurement in quality control testing and in research anddevelopment. These measurements are also used to determinethe suitability of particular products for various applica
7、tionsand to develop specifications. The sample may undergo someoxidation during the test.3.2 In 1988, ruggedness testing was conducted on this testprocedure. The following variables were studied:3.2.1 Testing temperature (2525 (1385) versus 2575F(1413C),3.2.2 Air atmosphere versus argon atmosphere i
8、n thefurnace,3.2.3 Hold time prior to breaking the sample (12 versus 18min), and3.2.4 Loading rate on the sample (175 (778) versus 350lb/min (1556 N/min).3.3 Resin bonded magnesia-carbon brick containing ap-proximately 17 % carbon after coking where tested in twoseparate ruggedness tests. Metal-free
9、 brick were tested in thefirst ruggedness test, while aluminum-containing brick weretested in the second. Results were analyzed at a 95 % confi-dence level.3.4 For the metal-free brick, the presence of an argonatmosphere and hold time had statistically significant effects onthe modulus of rupture at
10、 2550F (1400C). The argon atmo-sphere yielded a lower modulus of rupture. The samples testedin air had a well-sintered decarburized zone on the exteriorsurfaces, possibly explaining the higher moduli of rupture. Thelonger hold time caused a lower result for the metal-free brick.3.5 For the aluminum-
11、containing brick, testing temperature,the presence of an argon atmosphere, and loading rate hadstatistically significant effects on the modulus of rupture at2550F (1400C). The higher testing temperature increased themeasured result, the presence of an argon atmosphere loweredthe result, and the high
12、er loading rate increased the result.4. Apparatus4.1 Electrically-Heated FurnaceAn electrically heatedfurnace should be used. The furnace will contain an airatmosphere.4.2 Lower Bearing Edges, at least one pair, made fromvolume-stable refractory material (Note 1) shall be installed inthe furnace on
13、5-in. (127-mm) centers.4.3 Thrust Column, containing the top bearing edge that ismade from the same volume-stable refractory material used for1This test method is under the jurisdiction of ASTM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.01 on Strength.Current e
14、dition approved Oct. 1, 2012. Published November 2012. Originallyapproved in 1992. Previous edition approved in 2007 as C1099 07. DOI:10.1520/C1099-07R12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMS
15、tandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohoc
16、ken, PA 19428-2959. United States1the lower bearing edges, shall extend outside the furnace wheremeans are provided for applying a load.4.3.1 The lower bearing edges and the bearing end of thesupport column shall have rounded bearing surfaces havingabout a14-in. (6 mm) radius (Note 2). The lower bea
17、ringsurfaces may be made adjustable, but must attain the standardspan of 5 6332 in. (1276 2 mm). The length of the lowerbearing surfaces shall exceed the specimen width by about14in. The load shall be applied to the upper bearing edge by anysuitable means. Instrumentation for measuring the load shal
18、l beaccurate to 1 %.4.3.2 The thrust column shall be maintained in verticalalignment and all bearing surfaces shall be parallel in bothhorizontal directions.NOTE 1A minimum of 90 % alumina content is recommended as asuitable refractory.NOTE 2All bearing surfaces should be checked periodically tomain
19、tain a round surface.4.4 It is recommended that the furnace temperature becontrolled with calibrated platinum-rhodium/platinum thermo-couples connected to a program-controller recorder (seeMethod E220). A thermocouple protection tube is advisable.Temperature differential within the furnace shall not
20、 be morethan 620F (11C), but the controlling thermocouple shall beplaced within12 in. (13 mm) of the geometric center of a sideface of the test specimen when positioned on the bearing edges.5. Hazards5.1 Standard safety precautions that are used in high tem-perature testing should be followed for th
21、is test method. Thiswould include use of protective clothing and eyeglasses whenhandling hot samples. In addition, these tests should be run inan area that has adequate ventilation since there is potential foroxidation of carbon to form carbon monoxide. There may alsobe organic volatiles present fro
22、m pyrolysis of pitch and resin.6. Sampling6.1 The sample shall consist of five specimens, each takenfrom five brick or shapes.7. Test Specimens7.1 The standard test specimen shall be 1 6132 by 1 6132by approximately 6 in. (25 6 0.8 by 25 6 0.8 by approxi-mately 152 mm). Specimens cut from brick shal
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMC109920072012STANDARDTESTMETHODFORMODULUSOFRUPTUREOFCARBONCONTAININGREFRACTORYMATERIALSATELEVATEDTEMPERATURES

链接地址:http://www.mydoc123.com/p-463356.html