ASHRAE REFRIGERATION IP CH 22-2010 FOOD MICROBIOLOGY AND REFRIGERATION《食物微生物学和制冷》.pdf
《ASHRAE REFRIGERATION IP CH 22-2010 FOOD MICROBIOLOGY AND REFRIGERATION《食物微生物学和制冷》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE REFRIGERATION IP CH 22-2010 FOOD MICROBIOLOGY AND REFRIGERATION《食物微生物学和制冷》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、22.1CHAPTER 22FOOD MICROBIOLOGY AND REFRIGERATIONBasic Microbiology . 22.1Critical Microbial Growth Requirements . 22.1Design for Control of Microorganisms. 22.3The Role of HACCP 22.4Sanitation 22.4Regulations and Standards . 22.5EFRIGERATIONS largest overall application is the preven-R tion or reta
2、rdation of microbial, physiological, and chemicalchanges in foods. Even at temperatures near the freezing point,foods may deteriorate through growth of microorganisms, changescaused by enzymes, or chemical reactions. Holding foods at lowtemperatures merely reduces the rate at which these changes tak
3、eplace. A few spoilage organisms can grow at or below temperaturesat which food begins to freeze.Refrigeration also plays a major role in maintaining a safe foodsupply. Overall, the leading factor causing foodborne illness isimproper food-holding temperatures. Another important factor isimproperly s
4、anitized equipment. Engineering directly affects thesafety and stability of the food supply in design of cleanable equip-ment and facilities, as well as maintenance of environmental condi-tions that inhibit microbial growth. This chapter briefly discussesthe microbiology of foods and the effect of d
5、esign decisions on theproduction of safe and wholesome foods. Methods of applyingrefrigeration to specific foods are discussed in Chapters 30 to 42.BASIC MICROBIOLOGYMicroorganisms play several roles in a food production facility.They can contribute to food spoilage, producing off-odors and fla-vors
6、, or altering product texture or appearance through slime pro-duction and pigment formation. Some organisms cause disease;others are beneficial and are required to produce foods such ascheese, wine, and sauerkraut through fermentation.Microorganisms fall into four categories: bacteria, yeasts, molds
7、,and viruses. Bacteria are the most common foodborne pathogens.Bacterial growth rates, under optimum conditions, are generallyfaster than those of yeasts and molds, making bacteria a prime causeof spoilage, especially in refrigerated, moist foods. Bacteria havemany shapes, including spheres (cocci),
8、 rods (bacilli), or spirals (spi-rochetes), and are usually between 0.3 and 5 to 10 m in size. Bacteriacan grow in a wide range of environments. Some, notably Clostrid-ium and Bacillus spp., form endospores (i.e., resting states withextensive temperature, desiccation, and chemical resistance).Yeasts
9、 and molds become important in situations that restrict thegrowth of bacteria, such as in acidic or dry products. Yeasts cancause gas formation in juices and slime formation on fermentedproducts. Mildew (black mold) on humid surfaces and mold forma-tion on spoiled foods are also common. Some molds p
10、roduce verypowerful toxins (mycotoxins) that, if consumed, may be fatal.Viruses are obligate intracellular parasites that are specific to anindividual host. All viruses, including human viruses (e.g., hepatitisA), cannot multiply outside living cells or tissue. Refrigerationdesign features must incl
11、ude facilities for good employee handwash-ing and sanitation practices to minimize potential for product con-tamination. Bacterial viruses (phages), however, may contribute tostarter culture failure in bacterial fermentations if proper isolation,ventilation, and sanitation procedures are not followe
12、d. The use ofcommercial concentrated cultures, selected for phage resistance, hasgreatly reduced this problem.Sources of MicroorganismsBacteria, yeasts, and molds are widely distributed in water, soil,air, plant materials, and the skin and intestinal tracts of humans andanimals. Practically all unpr
13、ocessed foods are contaminated with avariety of spoilage and, sometimes, pathogenic microorganismsbecause foods act as excellent media for bacterial multiplication.Food processing environments that contain residual food materialwill naturally select for the microorganisms that are most likely tospoi
14、l the particular product.Microbial GrowthChanges in microbial populations follow a generalized growthcurve (Figure 1). An initial lag phase occurs as organisms adapt tonew environmental conditions and start to grow. The lag phase isvery important because the maximum extension of shelf life andlength
15、 of production runs are directly related to the length of the lagphase. After adaptation, the culture enters into the maximum (loga-rithmic) growth rate, and control of microbial growth is not possiblewithout major sanitation or other drastic measures. Numbers candouble as fast as every 20 to 30 min
16、 under optimum conditions.Toxin production and spore maturation, if possible, usually occurat the end of the exponential phase as the culture enters a stationaryphase. At this time, essential nutrients are depleted and/or inhibitoryby-products are accumulated. Eventually, culture viability declines;
17、the rate depends on the organism, medium, and other environmentalcharacteristics. Although refrigeration prolongs generation timeand reduces enzyme activity and toxin production, in most cases, itwill not restore lost product quality or safety.CRITICAL MICROBIAL GROWTH REQUIREMENTSFactors that influ
18、ence microbial growth can be divided into twocategories: (1) intrinsic factors that are a function of the food itselfThe preparation of this chapter is assigned to TC 10.9, Refrigeration Appli-cation for Foods and Beverages.Fig. 1 Typical Microbial Growth CurveFig. 1 Typical Microbial Growth Curve22
19、.2 2010 ASHRAE HandbookRefrigerationand (2) extrinsic factors that are a function of the environment inwhich a food is held.Intrinsic FactorsIntrinsic factors affecting microbial growth include nutrients,inhibitors, biological characteristics, water activity, pH, and pres-ence of competing microorga
20、nisms in a food. Although engineeringpractices have little effect on these parameters, an understanding ofhow intrinsic factors influence growth is useful in predicting thetypes of microorganisms that may be present.Nutrients. Like other living organisms, microorganisms requirefood to grow. Carbon a
21、nd energy sources are usually sugars andstarches. Nitrogen requirements are met by the presence of protein.Vitamins and minerals are also necessary. Lactic acid bacteria haverather exacting nutritional requirements, but many aerobic sporeformers have tremendous enzymatic capabilities that allow grow
22、thon a wide variety of substrates. Cleanable systems facilitate removalof residual food material and deprive microorganisms of the nutri-ents required for growth, thus preventing a buildup of organisms inthe environment.Inhibitors. Either naturally occurring or added as preservatives,inhibitors may
23、be present in food. Preservatives are not substitutesfor hygienic practices and, with time, microorganisms may developresistance. A cleanable processing system is still essential in pre-venting development of a resistant population.Competing Microorganisms. The presence of one type ofmicroorganism a
24、ffects other organisms in foods. Some organismsproduce inhibiting compounds or grow faster; others are better ableto use the available nutrients in a food matrix.Water Activity. All life-forms require water for growth. Wateractivity awrefers to the availability of water in a food system and isdefine
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEREFRIGERATIONIPCH222010FOODMICROBIOLOGYANDREFRIGERATION 食物 微生物学 制冷 PDF

链接地址:http://www.mydoc123.com/p-455891.html