ABS 125 NOTICE 1-2006 GUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS (FOR THE 'SFA’ OF 'SFA (years)’ CLASSIFICATION NOTATION)《基于疲劳分析的船用指导性说明(用于“SFA(年份)”的“SFA”分级符号)》.pdf
《ABS 125 NOTICE 1-2006 GUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS (FOR THE 'SFA’ OF 'SFA (years)’ CLASSIFICATION NOTATION)《基于疲劳分析的船用指导性说明(用于“SFA(年份)”的“SFA”分级符号)》.pdf》由会员分享,可在线阅读,更多相关《ABS 125 NOTICE 1-2006 GUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS (FOR THE 'SFA’ OF 'SFA (years)’ CLASSIFICATION NOTATION)《基于疲劳分析的船用指导性说明(用于“SFA(年份)”的“SFA”分级符号)》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、 ABSGUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS .2004 1 GUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS (FOR THE SFA OF SFA (years) CLASSIFICATION NOTATION) JANUARY 2004 NOTICE NO. 1 August 2006 The following Changes become EFFECTIVE AS OF 15 AUGUST 2006. (See http:/w
2、ww.eagle.org/rules/downloads.html for the consolidated version of the Guidance Notes on Spectral-based Fatigue Analysis for Vessels 2004, updated in August 2006, with all Notices and Corrigenda incorporated.) Notes - The date in the parentheses means the date that the Rule becomes effective for new
3、construction based on the contract date for construction, unless otherwise noted. SECTION 2 ESTABLISHING FATIGUE DEMAND 7 Combined Fatigue from Multiple Base Vessel Loading Conditions (15 August 2006) (Revise and expand Note in Subparagraph 2/7, as follows.) Because of the variability in Base Vessel
4、 Loading Conditions and its effects on the fatigue strength predictions, it is necessary to consider more than one base case in the fatigue analysis. As a minimum, two cases should be modeled and used in the Spectral-based Fatigue Analysis process. The two cases are ones resulting from, and represen
5、ting, the probable deepest and shallowest drafts, respectively, that the vessel is expected to experience during its service life. Note: Suggested Approach: In some (so-called “Closed Form”) formulations to calculate fatigue demand, the fraction of the total time for each Base Vessel Loading Conditi
6、on is used directly. In this case, potentially useful information about the separate fatigue damage from each vessel loading condition is not obtained. Therefore, it is suggested that the fatigue damage from each vessel loading condition be calculated separately. The combined fatigue life is then ca
7、lculated as a weighted average of the reciprocals of the lives resulting from considering each case separately. For example, if two base loading conditions are employed, and the calculated fatigue life for a structural location due to the respective base vessel loading conditions are denoted L1and L
8、2, and it is assumed that each case is experienced for one-half of the sailing time during the vessels service life, then the combined fatigue life, LC, is: LC= 1/0.850.5(1/L1)+ 0.5(1/L2). As a further example, if there were three base vessel loading conditions L1, L2, and L3with exposure time facto
9、rs of 40, 40, and 20 percent, respectively; then the combined fatigue life, LC, is: LC= 1/0.850.4(1/L1) + 0.4(1/L2) + 0.2(1/L3). The factor of 0.85 takes into account non-sailing time for operations such as loading and unloading, repairs, etc. Notice No. 1 August 2006 2 ABSGUIDANCE NOTES ON SPECTRAL
10、-BASED FATIGUE ANALYSIS FOR VESSELS .2004 SECTION 5 WAVE-INDUCED LOAD COMPONENTS 3 External Pressure Component (Add new Note in Paragraph 5/3.3 and number last paragraph as 5/3.5, as follows.) 3.3 Intermittent Wetting (15 August 2006) Ship motion analysis based on linear theory will not predict the
11、non-linear effects near the mean waterline due to intermittent wetting. In actual service, this phenomenon is manifested by a reduction in the number of fatigue cracks at side shell plating stiffeners located near the waterline compared to those about four (4) or five (5) bays below. To take into ac
12、count the pressure reduction near the mean waterline due to this non-linearity, the following reduction factor can be used: RF = 0.51.0 + tanh(0.35d) where d is depth, in meters, of the field point below the still-water waterline. Note: In order to correctly implement the intermittent wetting effect
13、s, the size of hydrodynamic panel of side shell near waterline should be appropriately modeled with consideration of longitudinal spacing. It is recommended that the size of panel be no greater than two times of side longitudinal spacing in the vertical direction. 3.5 Pressure Distribution on Finite
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ABS125NOTICE12006GUIDANCENOTESONSPECTRALBASEDFATIGUEANALYSISFORVESSELSFORTHE SFA OF SFAYEARS CLASSIFICATIONNOTATION

链接地址:http://www.mydoc123.com/p-400547.html