【考研类试卷】考研数学三-409及答案解析.doc
《【考研类试卷】考研数学三-409及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三-409及答案解析.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三-409 及答案解析(总分:149.99,做题时间:90 分钟)一、选择题(总题数:8,分数:32.00)1.设某商品的需求函数为 Q=160-2P,其中 Q,P 分别表示需求量和价格,如果该商品需求弹性的绝对值等于 1,则商品的价格是_(分数:4.00)A.10B.20C.30D.402.设 (分数:4.00)A.f(x)在 x=0 处不连续B.f(x)在 x=0 处连续但不可导C.f(x)在 x=0 处可导,但其导函数不一定连续D.f(x)在 x=0 处导函数连续3.已知 x=0 是函数 (分数:4.00)A.a=1,b 为任意实数B.a1,b 为任意实数C.b=-1,a 为任意
2、实数D.b-1,a 为任意实数4.设级数 (分数:4.00)A.当 a 时,级数收敛B.当 时,级数收敛C.当 时,级数收敛D.当 时,级数收敛5.设向量组() 1 , 2 , s ,其秩为 r 1 ,向量组() 1 , 2 , s ,其秩为 r 2 ,且 i (i=1,2,s)均可由() 1 , 2 , s 线性表出,则_(分数:4.00)A.向量组 1+1,2+2,s+s 的秩为 r1+r2B.向量组 1-1,2-2,s-s 的秩为 r1-r2C.向量组 1,2,s,1,2,s 的秩为 r1+r2D.向量组 1,2,s,1,2,s 的秩为 r16.设 A 为 45 矩阵,且 A 的行向量线
3、性无关,则_ AA 的列向量组线性无关 B方程组 Ax=b 有无穷多解 C方程组 Ax=b 的增广矩阵 (分数:4.00)A.B.C.D.7.设随机变量 X 的分布函数为 又知 ,则_ A B C D (分数:4.00)A.B.C.D.8.假设随机变量 X 1 ,X 2 ,X 5 ,独立同分布且其方差存在,记 W=X 1 +X 2 +X 3 ,Z=X 3 +X 4 +X 5 ,则 W 和 Z 的相关系数 WZ 为_ A B C D (分数:4.00)A.B.C.D.二、填空题(总题数:6,分数:24.00)9.微分方程 y“+y “2 =0 满足初始条件 y| x=0 =1, (分数:4.00
4、)10. (分数:4.00)11.设二元函数 z=xe x+y +(x+1)ln(1+y),则 dz| (1,0) = 1 (分数:4.00)12.设函数 f(x)具有连续的二阶导数,点(x 0 ,f(x 0 )是曲线 y=f(x)上的拐点,则 (分数:4.00)13.设 A 为三阶方阵,|A|=4,则|(A*)*-2A| 1 (分数:4.00)14.设平面区域 D 由曲线 (分数:4.00)三、解答题(总题数:9,分数:94.00)15.若 u=u(x,y)具有连续的二阶偏导数,证明 u(x,y)=f(x)(y)的充要条件是: (分数:10.00)_16.设 f(x)可微,f(0)=0,f“
5、(0)=1, (分数:10.00)_设 f(x)在-2,2上二阶可导(分数:11.00)(1).若|f(x)|1(x-2,2),又 ,证明: (分数:5.50)_(2).若 f“(x)0(x(-2,2),又 a(-2,2)使得 f“(a)0,证明: (分数:5.50)_17.设 ,且 P0,判别级数 (分数:10.00)_设抛物线 (分数:9.99)(1).求曲线过点(1,0)的切线;(分数:3.33)_(2).求曲线、切线及 x 轴所围成的平面图形的面积;(分数:3.33)_(3).求第二小题中图形绕 x、y 轴旋转所得旋转体的体积(分数:3.33)_18.设 1 =(1,2,0) T ,
6、2 =(1,a+2,-3a) T , 3 =(-1,-b-2,a+2b) T ,=(1,3,-3) T ,试讨论当 a,b 为何值时: (1) 不能由 1 , 2 , 3 线性表示; (2) 可由 1 , 2 , 3 唯一地线性表示,并求出表示式; (3) 可由 1 , 2 , 3 线性表示,但表示式不唯一,并求出表示式 (分数:11.00)_设 (分数:11.00)(1).用正交变换化二次型为标准形,并写出所作的正交变换及标准形;(分数:5.50)_(2).是否存在可逆阵 W,使得 WW T =A其中 A 是二次型的对应矩阵,若存在,求 W,若不存在,说明理由(分数:5.50)_19.设 X
7、 与 Y 的概率密度分别为 且 X 与 Y 相互独立,求 (分数:11.00)_20.设 XN(0, ),YN(0, (分数:10.00)_考研数学三-409 答案解析(总分:149.99,做题时间:90 分钟)一、选择题(总题数:8,分数:32.00)1.设某商品的需求函数为 Q=160-2P,其中 Q,P 分别表示需求量和价格,如果该商品需求弹性的绝对值等于 1,则商品的价格是_(分数:4.00)A.10B.20C.30D.40 解析:解析 若 ,P=P-80,无意义; 若 2.设 (分数:4.00)A.f(x)在 x=0 处不连续B.f(x)在 x=0 处连续但不可导C.f(x)在 x=
8、0 处可导,但其导函数不一定连续 D.f(x)在 x=0 处导函数连续解析:解析 3.已知 x=0 是函数 (分数:4.00)A.a=1,b 为任意实数B.a1,b 为任意实数C.b=-1,a 为任意实数D.b-1,a 为任意实数 解析:解析 若 存在且 ,则称 x 0 是 f(x)的可去间断点 因为 x=0 是 f(x)的可去间断点,所以 为保证 4.设级数 (分数:4.00)A.当 a 时,级数收敛B.当 时,级数收敛 C.当 时,级数收敛D.当 时,级数收敛解析:解析 当 时, 所以级数与 收敛性相同,而 是以 为公比的几何级数,且当 5.设向量组() 1 , 2 , s ,其秩为 r
9、1 ,向量组() 1 , 2 , s ,其秩为 r 2 ,且 i (i=1,2,s)均可由() 1 , 2 , s 线性表出,则_(分数:4.00)A.向量组 1+1,2+2,s+s 的秩为 r1+r2B.向量组 1-1,2-2,s-s 的秩为 r1-r2C.向量组 1,2,s,1,2,s 的秩为 r1+r2D.向量组 1,2,s,1,2,s 的秩为 r1 解析:解析 因向量组 A 1 + 1 , 2 + 2 , s + s 中任一向量及向量组 B 1 - 1 , 2 - 2 , s - s 中任一向量均可由 1 , 2 , s 线性表出,故秩均应r 1 同样向量组 C 及 D 中,因 i (
10、i=1,2,s)均可由 1 , 2 , s 线性表出,故应有 r( 1 , 2 , s , 1 , 2 , s )=r( 1 , 2 , s )=r 1 ,故应选D6.设 A 为 45 矩阵,且 A 的行向量线性无关,则_ AA 的列向量组线性无关 B方程组 Ax=b 有无穷多解 C方程组 Ax=b 的增广矩阵 (分数:4.00)A.B. C.D.解析:解析 因为7.设随机变量 X 的分布函数为 又知 ,则_ A B C D (分数:4.00)A. B.C.D.解析:解析 由于分布函数 F(x)是右连续函数,因此有 F(-1+0)=F(-1)即 由于 F(1)=PX1=PX1+PX=1,且 P
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 409 答案 解析 DOC
