【考研类试卷】考研数学一(线性代数)-试卷50及答案解析.doc
《【考研类试卷】考研数学一(线性代数)-试卷50及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(线性代数)-试卷50及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)-试卷 50 及答案解析(总分:68.00,做题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A,B 为 n 阶可逆矩阵,则( )(分数:2.00)A.存在可逆矩阵 P 1 ,P 2 ,使得 P 1 1 AP 1 ,P 2 1 BP 2 为对角矩阵B.存在正交矩阵 Q 1 ,Q 2 ,使得 Q 1 T AQ 1 ,Q 2 T BQ 2 为对角矩阵C.存在可逆矩阵 P,使得 P 1 (A+B)P 为对角矩阵D.存在可逆矩阵 P,Q,使得 PAQ=B3.n 阶实对称矩阵
2、A 正定的充分必要条件是( )(分数:2.00)A.A 无负特征值B.A 是满秩矩阵C.A 的每个特征值都是单值D.A * 是正定矩阵4.下列说法正确的是( )(分数:2.00)A.任一个二次型的标准形是唯一的B.若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同C.若一个二次型的标准形系数中没有负数,则该二次型为正定二次型D.二次型的标准形不唯一,但规范形是唯一的5.设 A 为可逆的实对称矩阵,则二次型 X T Ax 与 X T A 1 X( )(分数:2.00)A.规范形与标准形都不一定相同B.规范形相同但标准形不一定相同C.标准形相同但规范形不一定相同D.规范形和标准形都相同6
3、.设 n 阶矩阵 A 与对角矩阵合同,则 A 是( )(分数:2.00)A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵7.设 A,B 都是 n 阶矩阵,且存在可逆矩阵 P,使得 AP=B,则( )(分数:2.00)A.A,B 合同B.A,B 相似C.方程组 AX=0 与 BX=0 同解D.r(A)=r(B)8.设 A,B 为 n 阶实对称矩阵,则 A 与 B 合同的充分必要条件是( )(分数:2.00)A.r(A)=r(B)B.|A|=|B|C.ABD.A,B 与同一个实对称矩阵合同9.设 A= (分数:2.00)A.相似且合同B.相似不合同C.合同不相似D.不合同也不相似10.设 A,B
4、 为三阶矩阵,且特征值均为一 2,1,1,以下命题:(1)AB;(2)A,B 合同;(3)A,B 等价;(4)|A|=|B|中正确的命题个数为( )(分数:2.00)A.1 个B.2 个C.3 个D.4 个二、填空题(总题数:4,分数:8.00)11.二次型 f(x 1 ,x 2 ,x 3 )=(x 1 x 2 ) 2 +4x 2 x 3 的矩阵为 1(分数:2.00)填空项 1:_12.设 1 = (分数:2.00)填空项 1:_13.设二次型 2x 1 2 +x 2 2 +x 3 2 +2x 1 x 2 +ax 2 x 3 的秩为 2,则 a= 1(分数:2.00)填空项 1:_14.设
5、5x 1 2 +x 2 2 +tx 3 2 +4x 1 x 2 一 2x 1 x 3 一 2x 2 x 3 为正定二次型,则 t 的取值范围是 1(分数:2.00)填空项 1:_三、解答题(总题数:20,分数:40.00)15.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_16.设非零 n 维列向量 , 正交且 A= T 证明:A 不可以相似对角化(分数:2.00)_17.设 A= (分数:2.00)_18.设 A= (分数:2.00)_19.设 A 为 n 阶非零矩阵,且存在自然数 k,使得 A k =0证明:A 不可以对角化(分数:2.00)_20.设 A 为三阶矩阵,
6、A i =i i (i=1,2,3), 1 = (分数:2.00)_21.设 = (分数:2.00)_22.设 A= (分数:2.00)_23.设 AB,A= (分数:2.00)_24.设 A= (分数:2.00)_25.用配方法化下列二次型为标准形: f(x 1 ,x 2 ,x 3 )=x 1 2 +2x 2 2 5x 3 2 +2x 1 x 2 2x 1 x 3 +2x 2 x 3 (分数:2.00)_26.用配方法化下列二次型为标准形: f(x 1 ,x 2 ,x 3 )=2x 1 x 2 +2x 1 x 3 +6x 2 x 3 (分数:2.00)_27.设二次型 f(x 1 ,x 2
7、,x 3 )=X T AX,A 的主对角线上元素之和为 3,又 AB+B=O,其中 B= (分数:2.00)_28.二次型 f(x 1 ,x 2 ,x 3 )=x 1 2 +ax 2 2 +x 3 2 4x 1 x 2 8x 1 x 3 4x 2 x 3 经过正交变换化为标准形 5y 1 2 +by 2 2 4x 3 2 ,求: (1)常数 a,b; (2)正交变换的矩阵 Q(分数:2.00)_29.设二次型 f(x 1 ,x 2 ,x 3 )=(a 一 1)x 1 2 +(a 一 1)x 2 2 +2x 3 2 +2x 1 x 2 (a0)的秩为 2 (1)求a; (2)用正交变换法化二次型
8、为标准形(分数:2.00)_30.设 n 阶实对称矩阵 A 的秩为 r,且满足 A 2 =A(A 称为幂等阵) 求:(1)二次型 X T AX 的标准形; (2)|E+A+A 2 +A n |的值(分数:2.00)_31.设 A 为 n 阶实对称可逆矩阵,f(x 1 ,x 2 ,x n )= (分数:2.00)_32.设 C= (分数:2.00)_33.设二次型 f(x 1 ,x 2 ,x 3 )=x 1 2 +4x 2 2 +2x 3 2 +2Tx 1 x 2 +2x 1 x 3 为正定二次型,求 t 的范围(分数:2.00)_34.设 A 是 N 阶正定矩阵,证明:|E+A|1(分数:2.
9、00)_考研数学一(线性代数)-试卷 50 答案解析(总分:68.00,做题时间:90 分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A,B 为 n 阶可逆矩阵,则( )(分数:2.00)A.存在可逆矩阵 P 1 ,P 2 ,使得 P 1 1 AP 1 ,P 2 1 BP 2 为对角矩阵B.存在正交矩阵 Q 1 ,Q 2 ,使得 Q 1 T AQ 1 ,Q 2 T BQ 2 为对角矩阵C.存在可逆矩阵 P,使得 P 1 (A+B)P 为对角矩阵D.存在可逆矩阵 P,Q,使得 PAQ=B 解析:解
10、析:因为 A,B 都是可逆矩阵,所以 A,B 等价,即存在可逆矩阵 P,Q,使得 PAQ=B,选(D)3.n 阶实对称矩阵 A 正定的充分必要条件是( )(分数:2.00)A.A 无负特征值 B.A 是满秩矩阵C.A 的每个特征值都是单值D.A * 是正定矩阵解析:解析:A 正定的充分必要条件是 A 的特征值都是正数,(A)不对;若 A 为正定矩阵,则 A 一定是满秩矩阵,但 A 是满秩矩阵只能保证 A 的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件4.下列说法正确的是( )(分数:2.00)A.任一个二次型的标准形是
11、唯一的B.若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同C.若一个二次型的标准形系数中没有负数,则该二次型为正定二次型D.二次型的标准形不唯一,但规范形是唯一的 解析:解析:(A)不对,如 f=x 1 x 2 ,令 5.设 A 为可逆的实对称矩阵,则二次型 X T Ax 与 X T A 1 X( )(分数:2.00)A.规范形与标准形都不一定相同B.规范形相同但标准形不一定相同 C.标准形相同但规范形不一定相同D.规范形和标准形都相同解析:解析:因为 A 与 A 1 合同,所以 X T AX 与 X T A 1 X 规范形相同,但标准形不一定相同,即使是同一个二次型也有多种标准形
12、,选(B)6.设 n 阶矩阵 A 与对角矩阵合同,则 A 是( )(分数:2.00)A.可逆矩阵B.实对称矩阵 C.正定矩阵D.正交矩阵解析:解析:7.设 A,B 都是 n 阶矩阵,且存在可逆矩阵 P,使得 AP=B,则( )(分数:2.00)A.A,B 合同B.A,B 相似C.方程组 AX=0 与 BX=0 同解D.r(A)=r(B) 解析:解析:因为 P 可逆,所以 r(A)=r(B),选(D)8.设 A,B 为 n 阶实对称矩阵,则 A 与 B 合同的充分必要条件是( )(分数:2.00)A.r(A)=r(B)B.|A|=|B|C.ABD.A,B 与同一个实对称矩阵合同 解析:解析:因为
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 50 答案 解析 DOC
