(通用版)2020版高考数学大一轮复习第11讲函数与方程学案理新人教A版.docx
《(通用版)2020版高考数学大一轮复习第11讲函数与方程学案理新人教A版.docx》由会员分享,可在线阅读,更多相关《(通用版)2020版高考数学大一轮复习第11讲函数与方程学案理新人教A版.docx(9页珍藏版)》请在麦多课文档分享上搜索。
1、1第 11 讲 函数与方程1.函数的零点(1)函数零点的定义对于函数 y=f(x)(x D),把使 的实数 x 叫作函数 y=f(x)(x D)的零点 . (2)等价关系方程 f(x)=0 有实数根函数 y=f(x)的图像与 有交点 函数 y=f(x)有 . (3)函数零点的判定(零点存在性定理)如果函数 y=f(x)在区间 a,b上的图像是连续不断的一条曲线,并且有 ,那么函数y=f(x)在区间 内有零点,即存在 c( a,b),使得 ,这个 也就是方程 f(x)=0 的根 . 2.二次函数 y=ax2+bx+c(a0)的图像与零点的关系 0 = 0 0)的图像与 x 轴的交点无交点零点个数
2、 常用结论1.在区间 D 上单调的函数在该区间内至多有一个零点 .2.周期函数如果存在零点,则必有无穷个零点 .2题组一 常识题1.教材改编 函数 f(x)=ln x+2x-6 的零点的个数是 . 2.教材改编 如果函数 f(x)=ex-1+4x-4 的零点在区间( n,n+1)(n 为整数)内,则 n= . 3.教材改编 函数 f(x)=x3-2x2+x 的零点是 . 4.教材改编 若函数 f(x)=x2-4x+a 存在两个不同的零点,则实数 a 的取值范围是 .题组二 常错题索引:错用零点存在性定理;误解函数零点的定义;忽略限制条件;二次函数在 R 上无零点的充要条件(判别式小于零) .5
3、.函数 f(x)=x+ 的零点个数是 . 1x6.函数 f(x)=x2-3x 的零点是 . 7.若二次函数 f(x)=x2-2x+m 在区间(0,4)上存在零点,则实数 m 的取值范围是 . 8.若二次函数 f(x)=x2+kx+k 在 R 上无零点,则实数 k 的取值范围是 . 探究点一 函数零点所在区间的判断例 1 (1)函数 f(x)=ex-x-2 在下列哪个区间上必有零点 ( )A.(-1,0) B.(0,1)C.(1,2) D.(2,3) (2)已知函数 f(x)=lg x+ x-5 在区间( n,n+1)(nZ)上存在零点,则 n= . 54总结反思 判断函数零点所在区间的方法:(
4、1)解方程法,当对应方程易解时,可直接解方程;(2)零点存在性定理;(3)数形结合法,画出相应函数图像,观察与 x 轴交点来判断,或转化为两个函数的图像在所给区间上是否有交点来判断 .变式题 2018南昌模拟 函数 f(x)=ln(x+1)- 的零点所在的区间为( )2x23A.(0,1) B.(1,2) C.(2,3) D.(3,4)探究点二 函数零点个数的讨论例 2 (1)已知 f(x)是定义在 R 上的奇函数,且满足 f - +x =f ,当 x 时, f(x)32 (32+x) (0,32)=ln(x2-x+1),则函数 f(x)在区间0,6上的零点个数是 ( )A.3 B.5 C.7
5、 D.9(2)2018河南中原名校模拟 函数 f(x)=sin 2x+ -log3 x 的零点个数为 . 2总结反思 函数零点个数的讨论,基本解法有:(1)直接法,令 f(x)=0,有多少个解则有多少个零点;(2)定理法,利用定理时往往还要结合函数的单调性、奇偶性等;(3)图像法,一般是把函数分拆为两个简单函数,依据两函数图像的交点个数得出函数的零点个数 .变式题 (1)2018重庆巴蜀中学月考 函数 f(x)= -2e-x的零点个数为 ( )3xA.0 B.1 C.2 D.3(2)已知函数 f(x)= 则函数 g(x)=f(x)2-3f(x)+2 的零点个数为 . lnx,x0,ex,x 0
6、,探究点三 函数零点的应用例 3 (1)设函数 f(x)=ex+x-2,g(x)=ln x+x2-3,若实数 a,b 满足 f(a)=g(b)=0,则 ( )A.f(b)1,2-ex,x 1,m(x-1)有两个零点,则实数 m 的取值范围是 ( ) A.(-2,0) B.(-1,0)C.(-2,0)(0, + ) D.(-1,0)(0, + )总结反思 函数零点的应用主要体现在三类问题中:一是函数中不含参数,零点又不易直接求出,考查各零点的和或范围问题;二是函数中含有参数,根据零点情况求函数中参数的范围;三4是函数中有参数,但不求参数,仍是考查零点的范围问题 .这三类问题一般是通过数形结合或分
7、离参数求解 .变式题 (1)2018山东、湖北部分重点中学二模 若函数 f(x)=cos x+2|cos x|-m,x0,2恰有两个零点,则 m 的取值范围为 ( )A.(0,1 B.1C.0(1,3 D.0,3(2)若 x1,x2分别是函数 f(x)=x-2-x,g(x)=xlog2x-1 的零点,则下列结论成立的是 ( )A.x1=x2 B.x1x2C.x1+x2=1 D.x1x2=1第 11 讲 函数与方程考试说明 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数 .【课前双基巩固】知识聚焦1.(1)f(x)=0 (2)x 轴 零点 (3)f(a)f
8、(b)0,故存在唯一零点 .2.0 解析 函数 f(x)单调递增,且 f(0)0,故其零点在区间(0,1)内,则 n=0.53.0,1 解析 由 f(x)=x3-2x2+x=0,解得 x1=0,x2=1,所以函数的零点是 0,1.4.(- ,4) 解析 = 16-4a0,解得 a0 时, f(x)0,当 x0 即可,即 -1+m0 且 8+m0,解得 -80,故选 C.1e(2)f(x)=lg x+ x-5 是定义在(0, + )上的增函数,54根据零点存在性定理,可得 因为 f(1)= -50. 54 52 1545=lg 40,所以函数 f(x)在(3,4)上存在零点,故 n=3.变式题
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用版 2020 高考 数学 一轮 复习 11 函数 方程 学案理 新人 DOCX
