2019年春八年级数学下册第17章勾股定理17.1勾股定理(第1课时)教案(新版)新人教版.docx
《2019年春八年级数学下册第17章勾股定理17.1勾股定理(第1课时)教案(新版)新人教版.docx》由会员分享,可在线阅读,更多相关《2019年春八年级数学下册第17章勾股定理17.1勾股定理(第1课时)教案(新版)新人教版.docx(8页珍藏版)》请在麦多课文档分享上搜索。
1、1第十七章 勾股定理17.1 勾股定理(第 1 课时)教学目标1 .了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法 .2 .能说出勾股定理,并能应用其进行简单的计算 . 过程与方法1 .在勾股定理的探索过程中,经历观察猜想归纳验证的数学发现过程 .2 .发展合情推理的能力,体会数形结合思想、由特殊到一般的数学思想、分类讨论思想 .情感、态度与价值观通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增强学习数学的信心,激发学生的民族自豪感和爱国情怀重点与难点【重点】 探索和验证勾股定理,并能应用其进行简单的计算 .【难点】 用拼图的方法验证勾
2、股定理 .教学准备 【教师准备】 教学中出示的教学插图和例题 .【学生准备】 三角板、方格纸、三角形模型 .新课导入:2国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会” .2002 年在北京召开了第 24 届国际数学家大会 .大会的会徽图案有什么特殊含义呢?这个图案与数学中的勾股定理有着密切的关系 .中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.上述图案就揭示了“勾”“股”“弦”之间的特殊关系 .我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质 .研究特例是数学研究的一个方法,直角三角形是有一个
3、角为直角的特殊三角形,等腰直角三角形又是特殊的直角三角形,直角三角形的三边之间存在怎样的关系呢?我们的探究活动就从等腰直角三角形开始吧 .请同学们认真观察课本封面和本章章前彩图,说一说封面和章前彩图中的图形表示什么意思?它们之间有联系吗?封面是我国公元 3 世纪汉代的赵爽在注解周髀算经时给出的“弦图”,章前彩图是2002 年世界数学家大会的会徽,大会的会徽使用的主体图案就是“赵爽弦图” .目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等 .我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识
4、别这种语言的 .这个事实可以说明勾股定理的重大意义 .尤其是在两千年前,是非常了不起的成就 .你知道为什么把这个图案作为这次大会的会徽吗?本节课,我们一起来解读图中的奥秘 .如图所示,一座城墙高 11.7m,城墙外有一条宽为 9m 的护城河,那么一架长为 15m 的云梯能否达到城墙的顶端?这就是我们今天所要学习的内容,一个非常重要的定理“勾股定理” .1 .探索勾股定理3(1)探索等腰直角三角形三边之间的关系 .教师:这个地面图案中有大大小小、各种“姿势”的正方形 .毕达哥拉斯在这些正方形中发现了什么呢?(出示教材图 17.1-2)(1)问题提出:在图 17.1-2 中,是以等腰直角三角形三边
5、为边长的三个正方形 .这三个正方形面积之间存在怎样的关系?三个正方形之间的面积关系说明了什么?(2)学生活动:质疑、猜测、探索、交流三个正方形面积之间的关系 .学生的探索方法可能是:通过数正方形内等腰直角三角形个数的办法,得出两个小正方形的面积之和等于大正方形的面积 .(3)教师总结:通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形中的等腰直角三角形补成一个大正方形,得出结论:小正方形的面积之和等于大正方形的面积,也就是等腰直角三角形两条直角边的平方和等于斜边的平方 .(2)探索具体边长的非等腰直角三角形三边之间的关系 .(出示教材图 17.1-3)提出问题:(结合带提示的下图)1
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年春八 年级 数学 下册 17 勾股定理 171 课时 教案 新版 新人 DOCX
