REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf
《REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf》由会员分享,可在线阅读,更多相关《REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf(24页珍藏版)》请在麦多课文档分享上搜索。
1、FOR AERONAUTICS REPORT No. 865 _. :- : I METHODFORCA$ULiiTING$VICHAiACTiSTi , - I G !z . . L. . , D . DO iaoumc sm5oLs -, _ 1. FUNDAMENTAL AND Dl!WD UNITS . Meti Y-. ,jbgliak - symbo! : _ unit / ._ YEiT - foot (or mile)-,: _ .- _ eeoond (or. hour)-,-y, sea (or hr) -Fore _-_ weight of 1 kilogram-,- k
2、g weight of l-pound- lb , - - -. sayer _ , P - homepower (met or 0.002378 lb-ftA sd .- Momen! of .mertia-mk. Indicate axis oft - Specific weight of “stqlard” air, I,2255 /ma -or_ 9.07651 Ib/cu ft radius of gyration-k by propersubtiript.) / Coefhcient of -viscosity , : -. _ - ; .,-I- , . ., .a; - _ S
3、p&;n -r ,. -. , , , 2,., ., , METHOD FOR CALCULATING WING CHARACTERISTICS 3 equal to four times the corresponding coefficient in reference 5. The induced angle of attack (in degrees) at a point y1 on the lifting line is - 180 b S b/Z d ffi=- - u 87r -b/2 dy dy (2) Y1-Y This integral (in different no
4、menclature) was given by Prandtl in reference 6. If equation (1) is substituted into equation (2) and the variable is changed from y to 0, the induced angle of attack at the general point 0 becomes, according to reference 5, CY= and -yml;, respectively, for r=20. Similar tables for go AWLI; and goym
5、n- are given in TABLE I.-INDUCED-ANGLE-OF-ATT.4CK MULTIPLIERS pmk FOR ASYMMETRICAL LIFT DISTRIBUTIOKS %=,z,( y),“?“k 2.4 IF -0.9877 -n. 9511 -0.8910 -0. 8090 -0. 70il -0.5878 -Il. 4540 -0.3OJo -0.1564 0 211 _- -_- -_ -. _- _- IL I; m 19 18 17 16 15 14 13 12 11 10 -0.9877 19 915 651 -166.985 0 -7.019
6、 0 -1.401 0 -0.486 0 -0.230 1 O.%i7 _-_-_-_ _ _- -.- - -. 9511 18 -329.859 463.533 -122.749 0 -7.438 0 -1.792 0 -. 701 0 2 .9511 _ -_- _- -_- -. 8910 17 0 -180.336 315.512 -96. i3i 0 -i. Oi3 0 -1.920 0 -_ 819 3 .a910 - _ -_-_ _- -. 8090 16 -26.374 0 -125.246 243.694 -81.067 0 -6.680 0 -1.97i 0 4 .a0
7、90 -_-_- _- _- -_- _- -. 7071 15 0 -17.020 0 -9;. 524 202.571 -71.139 0 -6.391 0 -2. n2G _- _-_- _ -_ 5878 14 -i. 246 0 -12.604 0 -81.392 lii. 054 -64. i35 0 -G. 228 0 - _- _ -_ -_ _- -_ 4540 13 0 -5.166 0 -10.126 0 -il. 296 160.761 -fiO. i25 0 -6.192 7 4540 - -_- - - _ - - _- -. 3090 12 -2.956 0 -4
8、.022 0 -x. 396 0 -fvl. Bli 150.611 -58.514 0 8 .309G _-_ -_- -_-_ _-_ -_ 1564 11 0 -2. 241 0 -3.322 0 -i. 604 0 -60. iG8 145.025 -ST. 812 9 15R4 _ _- - -_ -_-_-_-_ -_- 0 10 -1.4m 0 -1.804 0 -2.865 0 -6.950 0 -58.533 143.239 10 0 _- -_- _-_ _-_- _-_-_-_-_-_ .1564 9 0 -1.153 0 -1.518 0 -2.554 0 -6.530
9、 0 -5i. 812 11 -. 1564 _- - -_- -_ _- _- .3090 8 -. 810 0 -.946 0 -1.319 0 -2.340 0 -6.288 0 12 -. 3090 _-_- - - - _ -_- .4540 i 0 -. G4G 0 -.son 0 -1. Ii6 0 -2.192 0 -6.192 13 -_ 4540 _- - -_- -_ _ _- .5878 6 -.46i 0 -. 530 0 -. 691 0 -1.068 0 -2.092 0 14 -. 5Si8 - -_- _- - -_-_ _ -_- ion 5 0 -_ 36
10、8 0 -_ 441 0 -.GO4 0 -.981 0 -2.02G 15 -_ iOi1 _-_-_-_ _- _- _ 1 2 3 4 _- _-_-_-_-_.-_ .98i7 .9511 .a910 .809G .iOll ) 6.S8i8 1 7.4540) .iOLa) .1564 ?fFT, 1 Vslues of I: at top to hr used with values of m at left side; valurs of I: at bottom to be used with values 01 m at right side. Provided by IHS
11、Not for ResaleNo reproduction or networking permitted without license from IHS-,-,- m Im nm Cm Cm.3 ! -_ IL- _ -0.9877 -_ 9511 :i -. 8910 li -.8090 -. 7071 : -.6878 14 -. 4540 13 -. 3090 12 -. 1564 0 :i : :ii 8” .4540 .5878 i .7071 5 .809a .8910 i .9511 2 .98ii 1 where u -22a, ma- Values of rlrnr vr
12、ns, urn, and uma are given in table III for r=20. 0.07854 .I5515 .I4939 .139+6 .12708 :Ei .07131 .04854 .02457 -0.00607 -. 01154 -. 01589 -. 01867 -. 01964 -. 0186i -. 01589 -.01154 -. c?!ml7 0 .00607 .01154 .01589 .01867 .01964 .01867 .01589 .01154 .00607 0 .01214 .02308 .03177 .03735 .03927 .03735
13、 .0317i .02308 .01214 - Wing lift coefficient.-The wing lift coefficient is obtained by means of a spanwise integration of the lift distribution, For asymmetrical lift distributions (15a) For symmetrical lift distributions (15b) Induced-drag coefficient.-The section induced-drag co- efficient is equ
14、al to the product of the section lift coefficient and the induced angle of attack in radians, The wing induced-drag coefficient is obtained by means of a spanwise integration of the section induced-drag coefficient multiplied by the local chord, S b/2 cDi=i -b/2 180 =lccv dy A CT ;l!?f!=!d() S Provi
15、ded by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- .:$ETHOD FOR CALCULATING WtVING CHARACTERISTICS .J 7 For asymmetrical lift distributions For asymmetrical lift distributions For symmetrical lift distributions (16b) ProAle:drag coefficient.-The section pro
16、file-drag coefh- cient can be obtained from section data for the appropriate airfoil section and local Reynolds number. For each span- wise station the profile-drag coefficient is read at the section lift coefficient previously determined. :. The wing profile- drag coefficient is then obtained by me
17、ans of a span -b,2 Cd,0 dy For asymmetrical lift distributions : (174 For symmetrical lift distributions cDQ=mzl (Cd, ;) qrns m , (17b) Pitching-moment coefficient.-The section pitching-moment coefficient about its quarter-chord point can be obtained from section data for the appropriate airfdil sec
18、tion and local Reynolds number. For each spanwise station the pitching- moment. coefficient is read at the section lift coefficient previously determined and then transferred to. the wing reference point by the equation -Icl sin (C%-cr()-c+, cos () may usually be neglected. The wing pitching-moment
19、coefficient is obtained by the spanwise integration L .,756-494 . ” .(. ,_ /.,. -:“.,y- ., . _ . j; ; ., _. : : :. .C- For symmetrical lift distributions Wb) Rolling-moment coefficient.-The rolling-moment coeffi- cient is obtained by means of a spanwise integration (204 For an antisymmetrical lift d
20、istribution Induced-yawing-moment coefficient.-The induced- yawing-moment coefficient is due to the moment of the induced-drag distribution, A S CIc rfft 3, d 2y - =4 -1 b 180 b 0 7 (21) The induced-yawing-moment coefficient for an antisymmet- rical lift distribution is equal to zero and has little
21、meaning inasmuch as the lift coefficient is also zero. The induced- yawing-moment coefficient is a function of the lift and rolling- moment coefficients and must be. found for asymmetrical lift distributions Profile-yawing-moment coefficient.-The profile-yawing- moment coefficient is due to the mome
22、nt of the profile-drag distribution, .C -A S b2 $ dy nQ sb-b/z _. : .- =!$lT 7 d ) _, (22) APLICATIONOFMETHODUSINNONLINEARSECTIONJFT DATA FOR SYMMETRICAL LIFT DISTRIBUTIONS . The method described is applied herein to a wing, the geometric characteristics of which are given in table IV. Only symmetri
23、cal lift distributions are considered hereinafter inasmuch as these are believed to b-e sufllcient for illustrating . ( (%8) and Y (S,) The y (LlQ 0 distribution is the additional lift distribu- tion corresponding to a wing lift coeflicient C, ) determined s in table IX through the use of the multip
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- REGNACATR8651947METHODFORCALCULATINGWINGCHARACTERISTICSBYLIFTINGLINETHEORYUSINGNONLINEARSECTIONLIFTDATAPDF

链接地址:http://www.mydoc123.com/p-1017593.html