欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf

    • 资源ID:1017593       资源大小:1.44MB        全文页数:24页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf

    1、FOR AERONAUTICS REPORT No. 865 _. :- : I METHODFORCA$ULiiTING$VICHAiACTiSTi , - I G !z . . L. . , D . DO iaoumc sm5oLs -, _ 1. FUNDAMENTAL AND Dl!WD UNITS . Meti Y-. ,jbgliak - symbo! : _ unit / ._ YEiT - foot (or mile)-,: _ .- _ eeoond (or. hour)-,-y, sea (or hr) -Fore _-_ weight of 1 kilogram-,- k

    2、g weight of l-pound- lb , - - -. sayer _ , P - homepower (met or 0.002378 lb-ftA sd .- Momen! of .mertia-mk. Indicate axis oft - Specific weight of “stqlard” air, I,2255 /ma -or_ 9.07651 Ib/cu ft radius of gyration-k by propersubtiript.) / Coefhcient of -viscosity , : -. _ - ; .,-I- , . ., .a; - _ S

    3、p&;n -r ,. -. , , , 2,., ., , METHOD FOR CALCULATING WING CHARACTERISTICS 3 equal to four times the corresponding coefficient in reference 5. The induced angle of attack (in degrees) at a point y1 on the lifting line is - 180 b S b/Z d ffi=- - u 87r -b/2 dy dy (2) Y1-Y This integral (in different no

    4、menclature) was given by Prandtl in reference 6. If equation (1) is substituted into equation (2) and the variable is changed from y to 0, the induced angle of attack at the general point 0 becomes, according to reference 5, CY= and -yml;, respectively, for r=20. Similar tables for go AWLI; and goym

    5、n- are given in TABLE I.-INDUCED-ANGLE-OF-ATT.4CK MULTIPLIERS pmk FOR ASYMMETRICAL LIFT DISTRIBUTIOKS %=,z,( y),“?“k 2.4 IF -0.9877 -n. 9511 -0.8910 -0. 8090 -0. 70il -0.5878 -Il. 4540 -0.3OJo -0.1564 0 211 _- -_- -_ -. _- _- IL I; m 19 18 17 16 15 14 13 12 11 10 -0.9877 19 915 651 -166.985 0 -7.019

    6、 0 -1.401 0 -0.486 0 -0.230 1 O.%i7 _-_-_-_ _ _- -.- - -. 9511 18 -329.859 463.533 -122.749 0 -7.438 0 -1.792 0 -. 701 0 2 .9511 _ -_- _- -_- -. 8910 17 0 -180.336 315.512 -96. i3i 0 -i. Oi3 0 -1.920 0 -_ 819 3 .a910 - _ -_-_ _- -. 8090 16 -26.374 0 -125.246 243.694 -81.067 0 -6.680 0 -1.97i 0 4 .a0

    7、90 -_-_- _- _- -_- _- -. 7071 15 0 -17.020 0 -9;. 524 202.571 -71.139 0 -6.391 0 -2. n2G _- _-_- _ -_ 5878 14 -i. 246 0 -12.604 0 -81.392 lii. 054 -64. i35 0 -G. 228 0 - _- _ -_ -_ _- -_ 4540 13 0 -5.166 0 -10.126 0 -il. 296 160.761 -fiO. i25 0 -6.192 7 4540 - -_- - - _ - - _- -. 3090 12 -2.956 0 -4

    8、.022 0 -x. 396 0 -fvl. Bli 150.611 -58.514 0 8 .309G _-_ -_- -_-_ _-_ -_ 1564 11 0 -2. 241 0 -3.322 0 -i. 604 0 -60. iG8 145.025 -ST. 812 9 15R4 _ _- - -_ -_-_-_-_ -_- 0 10 -1.4m 0 -1.804 0 -2.865 0 -6.950 0 -58.533 143.239 10 0 _- -_- _-_ _-_- _-_-_-_-_-_ .1564 9 0 -1.153 0 -1.518 0 -2.554 0 -6.530

    9、 0 -5i. 812 11 -. 1564 _- - -_- -_ _- _- .3090 8 -. 810 0 -.946 0 -1.319 0 -2.340 0 -6.288 0 12 -. 3090 _-_- - - - _ -_- .4540 i 0 -. G4G 0 -.son 0 -1. Ii6 0 -2.192 0 -6.192 13 -_ 4540 _- - -_- -_ _ _- .5878 6 -.46i 0 -. 530 0 -. 691 0 -1.068 0 -2.092 0 14 -. 5Si8 - -_- _- - -_-_ _ -_- ion 5 0 -_ 36

    10、8 0 -_ 441 0 -.GO4 0 -.981 0 -2.02G 15 -_ iOi1 _-_-_-_ _- _- _ 1 2 3 4 _- _-_-_-_-_.-_ .98i7 .9511 .a910 .809G .iOll ) 6.S8i8 1 7.4540) .iOLa) .1564 ?fFT, 1 Vslues of I: at top to hr used with values of m at left side; valurs of I: at bottom to be used with values 01 m at right side. Provided by IHS

    11、Not for ResaleNo reproduction or networking permitted without license from IHS-,-,- m Im nm Cm Cm.3 ! -_ IL- _ -0.9877 -_ 9511 :i -. 8910 li -.8090 -. 7071 : -.6878 14 -. 4540 13 -. 3090 12 -. 1564 0 :i : :ii 8” .4540 .5878 i .7071 5 .809a .8910 i .9511 2 .98ii 1 where u -22a, ma- Values of rlrnr vr

    12、ns, urn, and uma are given in table III for r=20. 0.07854 .I5515 .I4939 .139+6 .12708 :Ei .07131 .04854 .02457 -0.00607 -. 01154 -. 01589 -. 01867 -. 01964 -. 0186i -. 01589 -.01154 -. c?!ml7 0 .00607 .01154 .01589 .01867 .01964 .01867 .01589 .01154 .00607 0 .01214 .02308 .03177 .03735 .03927 .03735

    13、 .0317i .02308 .01214 - Wing lift coefficient.-The wing lift coefficient is obtained by means of a spanwise integration of the lift distribution, For asymmetrical lift distributions (15a) For symmetrical lift distributions (15b) Induced-drag coefficient.-The section induced-drag co- efficient is equ

    14、al to the product of the section lift coefficient and the induced angle of attack in radians, The wing induced-drag coefficient is obtained by means of a spanwise integration of the section induced-drag coefficient multiplied by the local chord, S b/2 cDi=i -b/2 180 =lccv dy A CT ;l!?f!=!d() S Provi

    15、ded by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- .:$ETHOD FOR CALCULATING WtVING CHARACTERISTICS .J 7 For asymmetrical lift distributions For asymmetrical lift distributions For symmetrical lift distributions (16b) ProAle:drag coefficient.-The section pro

    16、file-drag coefh- cient can be obtained from section data for the appropriate airfoil section and local Reynolds number. For each span- wise station the profile-drag coefficient is read at the section lift coefficient previously determined. :. The wing profile- drag coefficient is then obtained by me

    17、ans of a span -b,2 Cd,0 dy For asymmetrical lift distributions : (174 For symmetrical lift distributions cDQ=mzl (Cd, ;) qrns m , (17b) Pitching-moment coefficient.-The section pitching-moment coefficient about its quarter-chord point can be obtained from section data for the appropriate airfdil sec

    18、tion and local Reynolds number. For each spanwise station the pitching- moment. coefficient is read at the section lift coefficient previously determined and then transferred to. the wing reference point by the equation -Icl sin (C%-cr()-c+, cos () may usually be neglected. The wing pitching-moment

    19、coefficient is obtained by the spanwise integration L .,756-494 . ” .(. ,_ /.,. -:“.,y- ., . _ . j; ; ., _. : : :. .C- For symmetrical lift distributions Wb) Rolling-moment coefficient.-The rolling-moment coeffi- cient is obtained by means of a spanwise integration (204 For an antisymmetrical lift d

    20、istribution Induced-yawing-moment coefficient.-The induced- yawing-moment coefficient is due to the moment of the induced-drag distribution, A S CIc rfft 3, d 2y - =4 -1 b 180 b 0 7 (21) The induced-yawing-moment coefficient for an antisymmet- rical lift distribution is equal to zero and has little

    21、meaning inasmuch as the lift coefficient is also zero. The induced- yawing-moment coefficient is a function of the lift and rolling- moment coefficients and must be. found for asymmetrical lift distributions Profile-yawing-moment coefficient.-The profile-yawing- moment coefficient is due to the mome

    22、nt of the profile-drag distribution, .C -A S b2 $ dy nQ sb-b/z _. : .- =!$lT 7 d ) _, (22) APLICATIONOFMETHODUSINNONLINEARSECTIONJFT DATA FOR SYMMETRICAL LIFT DISTRIBUTIONS . The method described is applied herein to a wing, the geometric characteristics of which are given in table IV. Only symmetri

    23、cal lift distributions are considered hereinafter inasmuch as these are believed to b-e sufllcient for illustrating . ( (%8) and Y (S,) The y (LlQ 0 distribution is the additional lift distribu- tion corresponding to a wing lift coeflicient C, ) determined s in table IX through the use of the multip

    24、liers vms. It is usually convenient to use the additional lift distribution C,j2 - - b corresponding to a wing lift. coe5cient of unity. This distribution is found by dividing the values of 2 ( 6 (aas) by c”(mas,. The * ( b (*r3 distribution is a combination of the basic lift distribution and an add

    25、itional lift distribution corre- sponding to,a wing lift coe5cient CL (13 also determined in _-. -. table IX. The basic lift distribution CT is then determined ._._._ -. -_ . by subtracting the additional lift distribution y CL(tl,) Inasmuch as the wing lift curve is assumed to be linear, it is defi

    26、ned by its slope and angle of attack for zero lift which are also found in table IX. The maximum wing lift coefficient is estimated according to the method of refer- ence 10 which is illustrated in figure 4. The maximum lift coe5cient is considered to be the wing lift coe5cient at which some section

    27、 of the wing becomes the first to reach its maximum lift, that is, clb+CL c=c,. This value of CL is most conveniently determined by finding the minimum value of Czmaz-CzO . “al along the span as illustrated in table IX. -. I INDUCED-DRAG COEFFICIENT The section induced-drag coefficient is equal to t

    28、he prod- uct of the section lift coefficient and the induced angle of attack in radians. The lift distribution for any wing lift coe5cient is _ *: (23) The corresponding induced angle of attack distribution may Il 1 /,Ti c 1.55 1.12 .91 .al 1 .62 .70 .99 I 1.37 I- TABLE VI.-CALCULATION OF WING COEFF

    29、ICIENTS FOR EXAMPLE WING A=10.05; a.=3.00 .m - .224 - w CIC Multipliers 7 57.3+c (CT., 1 0 1 - 0 -65.803 .01138 .0981 - .01023 .OOOO I.C .1564- Fl .,o .3090- 2 a .4540- R e .5878- &; T-xiT- 03: - a .a : .8090 E. _- E .a910 / .105-i .0984 I .0893 I .0811 I .0722 - .0632 -/- .0534 (TiEiF/- I .0411 01

    30、-1.491 1 0 1 -7.089 1 0 I-167.045 1 915.651 S+ Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TABLE VIIT.-CALCULATION OF LIFT DISTRIBUTION FOR EXAMPLE WING FOR a.,=0 Multipliers A, Check - -72.472 0 -10.926 0 -.oG97 , 0 - - - -_- _ .8090 -2.138 -. 0

    31、125 0 -2.880 0 -7.208 0 -81.434 243.694 -125.537 0 -26.635 - -p-pppp - .8910 -2.604 -.0124 -1.638 0 -2.371 0 -7.370 0 -96.962 315.512 -180.528 - _, .9511 -3.013 -1.456 -1.557 -67.157 I-.-9.916 0 _- -62.917 160.761 -72.472 0 -10.926 0 -5.812 0 -.095 -.784 -.0742 .01023 -.a77 -_-_.- _- -65.803 177.054

    32、 -82.083 0 -13.134 0 -7.713 - -.a7 -1.028 -. 1019 .lwJ17 -.COQ4 - _ _- -71.743 202.571 -97.965 0 -17.388 0 -.331 -1.339 -.133 ar.,=lO.OO; y=-3.901 0 0.07854 0.1102 0.1323 -0.0029 -0.0105 0.0076 0.1429 0.926 0.053 1.421 1.477 - -_ -_- -_ _-_ _-_ .1564 .15515 .1057 .1269 -.a040 -. 0100 .0060 .I295 .9s

    33、o ,046 1.418 I. 400 _-_- _ -_- _ _- - .3090 .14939 .0984 .1181 -.0057 -. 0093 .0036 .1161 1.015 .031 1.423 1.371 _-_ _ _- - _- .4540 .13996 .0899 .I079 -.0077 - 0085 .0008 .I040 1.038 INJS 1.432 1.372 - _- _- -_ _ _ - .5878 .12708 .0811 .0974 -. 0096 -.0077 -.a019 .0925 1.053 -.a21 1.441 1.388 _- -_

    34、 .7071-.liiF .0722 .086i -. 0111 -.OOBS -.0043 .0823 1.053 -.a51 1.436 1.412 _- -_-_- .8090 .09233 .0632 oi59 -.0121 -.0060 -.0061 .a735 1.033 083 1.418 1.453 _- .8910 .07131 .0534 .0641 -. 0120 -. 0051 -. 0069 0665 964 104 1.404 1.564 _ _ _ _ _ -_-_ -_- - _- _- - I_ _- .9511 .04854 .a411 .0493 -.01

    35、04 -. 0039 -.0065 .0613 ,804 -.106 1.419 1.897 _ _ _ _ _-_ -_-_ -_- - - - - -;- - .9877 .02457 .0232 .0279 -.0063 -.0022 -.OOIl .013i ,635 -. 094 cL (“5) =Az(xO)=o.sar, CL ,e,) =AZ(X) = -0.Oi9 a=cI.0?Lo,n,33 -cr. () = _- =o.gj aQ*( L-0) cl *a, CL,“, =Min. value in =1.37 ,(L-O, =q*+% (,-;! =-2.95 TAB

    36、LE X.-CALCULATION OF ISDUCED-DRAG COEFFICIEXT FOR ESAlIPLE WISG A= 10.05; c+J =o.s33; CI.(.,) = -0.079 aid CLJlC 2Y Multipliers Ui(“Q i(,.) TJq,.) ai* 7 a nma (Table VII) (Table VIII) (XCq,/,) (Q-O) (Table IX) -_ ,_ 0.07854 / 2.060 0.1323 .15515 I 1.602 -.-12fi9-. .3090 .4540 .!a78 0.3273 _I o.Oi24

    37、0.0031 .2442 I .0416 .0014 .1952 .0225 .0005 _-_ - _- 1559 .0032 n - _ -_- .7071 .11107 1.218 1. 4w -.331 -.I16 -.215 .086i -_ _ _- -_- - - .8090 .09233 1.492 1.792 -.550 -.142 -.408 -(- .n759 _ _-_-_- .8910 .07131 2.111 2.535 -.830 -.200 -.630 .0641 _- - -_ .9511 .04854 3.399 4.081 -1.351 -.322 -1.

    38、029 -_I_ .n493 - _ -_ -.- .9877 .02457 4.840 5.812 -1.915 -.459 ) -1.456 j-=;-r-.0041- .0008 - -. 0019 -_ -.0042 _. -.0061 -_ - .0069 .-_ -.0065 - _-_ ,1359 -. 0121 .0002 -iii- -.0248 / .0009 _- -_- .I625 j -.05i9 .0013 .0067 .2012 ) -.0X3 .1622 ) -.0645 1 _ .0060 1 I I c”;=()cL2+()cL+* =o.n322cL*-n

    39、.noo3cL+o.ooo3 - The values of atal and or+, are determined in table X in the where same manner as CT and 7 in table IX. cd i, cl,lc ia The induced-drag -=-b- g7x b (26) (Table IX) O.OOi6 .0060 -_. .0036 distribution is therefore cd .c czc at -L- - b - b 57.3 and CdibC C!,C ffi* -=- _ b b 57.3 The c

    40、alculation of each of these induced-drag distributions is illustrated in table X together with the numerical inte- (25) gration of each distribution to obta.in the wing induced-drag coefficient. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-METHOD

    41、FOR CALCULATING WING CHARACTERISTICS 17 FIGURE 4.-Estimation of CLmaz for esmqle wing. (CL,“. estimated to hc 1.37.) PROFILE-DRAG AND PITCHING-MOMENT COEFFICIENTS The profile-drag and pitching-moment coefficients for the wing depend directly upon the section data and therefore their calculation is t

    42、he same whether linear or nonlinear section lift data are used. For the linear case the section lift coefficient is C1=CIa,L+Clb for any wing coefficient CL. By use of this value for c2 the profile-drag and pitching-moment coefficients are found as in table VI. DISCUSSION The characteristics of thre

    43、e wings with symmetrical lift clistributions have been calculated by use of both nonlinear and linear section lift data and are presented in figure 5 together with experimental results. These data were taken from reference 11. The lift curves calculated. by use of non- linear section lift data are i

    44、n close agreement with the experimental results over the entire range of lift coefficient, whereas those calculated by use of linear section lift data are in agreement only over. the linear portions of the curves as would be expected. It must be remembered that the methods presented are subject to t

    45、he limitations of lifting-line theory upon which the methods are based; therefore, the close agreement shown in figure 5 should not be expected for wings of low aspect ratio or large sweep. The use of the edge-velocity factor more or less compensates for some of the effects of aspect ratio and, in f

    46、act, appears to overcompensate at the larger values of aspect ratio as shown in figure 5. Additional comparisons of calculated and experimental data are given in reference 11 for wings with symmetrical lift distributions, but very little comparable data are avail- able for wings with asymmetrical lift distributions. Such data arc very desirable in order to determine the reliability with which calculated data may be used to predict experi- mental wing characteristics. LANGLEY MEMORIAL AERONAUTICAL LABORA


    注意事项

    本文(REG NACA-TR-865-1947 Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data.pdf)为本站会员(Iclinic170)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开