[考研类试卷]考研数学二(高等数学)模拟试卷54及答案与解析.doc
《[考研类试卷]考研数学二(高等数学)模拟试卷54及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学二(高等数学)模拟试卷54及答案与解析.doc(13页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(高等数学)模拟试卷 54 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 函数 f(x,y)在(x 0,y 0)处偏导数存在,则在该点函数 f(x,y)( )(A)有极限(B)连续(C)可微(D)以上结论均不成立二、填空题2 设 f(x,y, z)=exyz2,其中 z=z(x,y)是由 x+y+z+xyz=0 确定的隐函数,则 fx(0,1,一 1)=_3 已知4 设 2sin(x+2y 一 3z)=x+2y 一 3z,则5 设 f(x,y)可微,f(1 ,2)=2,f x(1,2)=3,f y(1,2)=4 ,(x)=f(x,f(x,2x),则 (
2、1)=_6 设 则 2fx(0,0)+f y(0,0)=_7 由 x=zey+z 确定 z=z(x,y),则 dz|(e,0)=_三、解答题解答应写出文字说明、证明过程或演算步骤。8 设 f(x)= 求 02f(x 一 )dx9 设 f(x)= 求 13f(x 一 2)dx10 设 f(x)=arcsin(x 一 1)2 且 f(0)=0,求 I=01f(x)dx11 设 f(u)是连续函数,证明: 0xf(sinx)dx=12 设 f(x)在区间0,1上可积,当 0xy1 时,|f(x)一 f(y)|arctanx 一 arctany|,又 f(1)=0,证明:13 证明: 0xasinxd
3、x. 其中 a0 为常数14 证明:15 设 f(x),g(x) 为a,b 上连续的增函数(0a b),证明: abf(x)dxabg(x)dx(b 一a)abf(x)g(x)dx16 设 f(x)在0,1上可导,且 |f(x)|M,证明:17 设函数 f(x)在0,2上连续可微,f(x)0 ,证明:对任意正整数 n,有18 设 f(x)在(一,+)上是导数连续的有界函数,|f(x)一 f(x)|1证明:|f(x)|119 设 f(x)在a,b上二阶可导,且 f“(x)0,证明: abf(x)dx20 已知 f(x)在0,2上二阶连续可微, f(1)=0,证明:| 02f(x)dx| 其中21
4、 计算曲线 (0x)的弧长22 设 D=(x, y)|0x1,0y1),直线 l:x+y=t(t0)S(t)为正方形区域 D 位于 l左下方的面积,求 0xS(t)dt(x0)23 求曲线 y=2e-x(x0)与 x 轴所围成的图形的面积24 设 f(x)是( 一+)上的连续非负函数且 f(x)0xf(x 一 t)dt=sin1x,求 f(x)在区间0, 上的平均值25 设抛物线 y=ax2+bx+c(a0)满足:(1)过点(0 ,0)及(1,2);(2)抛物线 y=ax2+bx+c与抛物线 y=一 x2+2x 所围图形的面积最小,求 a,b,c 的值26 设 f(x)=-1x(1 一|t|)
5、dt(x一 1),求曲线 y=f(x)与 x 轴所围成的平面区域的面积27 求曲线 y=xe-x(x0)绕 x 轴旋转一周所得延展到无穷远的旋转体的体积28 设由 y 轴、y=x 2(x0)及 y=a(0a 1)所围成的平面图形及由 y=a,y=x 2 及 x=1所围成的平面图形都绕 z 轴旋转,所得旋转体的体积相等,求 a29 设曲线 在点(x 0,y 0)处有公共的切线,求:(1)常数 a 及切点坐标; (2)两曲线与 x 轴所围成的平面图形绕 x 轴旋转所得旋转体的体积30 设 f(x,y)= 试讨论 f(x,y)在点(0,0)处的连续性,可偏导性和可微性31 设连续函数 f(x)满足:
6、 01f(x)+xf(xt)dt 与 x 无关,求 f(x)考研数学二(高等数学)模拟试卷 54 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 取 f(x,y)= 显然 f(x,y)在(0,0)处偏导数存在,但 不存在,所以应选(D)【知识模块】 高等数学二、填空题2 【正确答案】 1【试题解析】 x+y+z+xyz=0 两边关于 x 求偏导得将 x=0,y=1,z=一 1 代入得 故 fx(0,1,一1)=1【知识模块】 高等数学3 【正确答案】 【试题解析】 两边关于 x 求偏导得【知识模块】 高等数学4 【正确答案】 1【试题解
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 高等数学 模拟 54 答案 解析 DOC
