ASTM F2682-2007(2012)e1 Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom《测定围油栏浮力重量比的标准指南》.pdf
《ASTM F2682-2007(2012)e1 Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom《测定围油栏浮力重量比的标准指南》.pdf》由会员分享,可在线阅读,更多相关《ASTM F2682-2007(2012)e1 Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom《测定围油栏浮力重量比的标准指南》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F2682 07 (Reapproved 2012)1Standard Guide forDetermining the Buoyancy to Weight Ratio of Oil SpillContainment Boom1This standard is issued under the fixed designation F2682; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisi
2、on, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial changes were made to Sections 3, 6, 7, and 9.1. Scope1.1 This guide describes a practical method fo
3、r determiningthe buoyancy to weight (B/W) ratio of oil spill containmentbooms.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and deter
4、mine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2F818 Terminology Relating to Spill Response BarriersF1523 Guide for Selection of Booms in Accordance WithWater Body Classifications3. Terminology3.1 boom sectionlength of boom between two end co
5、n-nectors. F8183.2 boom segmentrepetitive identical portion of the boomsection. F8183.3 buoyancy to weight ratiogross buoyancy divided byboom weight. F8183.4 gross buoyancyweight of fresh water displaced by aboom totally submerged.3.5 reserve buoyancygross buoyancy minus boomweight. F8184. Significa
6、nce and Use4.1 This guide describes a method of determining thebuoyancy to weight ratio of spill response booms. The prin-ciple is based on Archimedes Law, which states that a bodyeither wholly or partially immersed in a fluid will experiencean upward force equal and opposite to the weight of the fl
7、uiddisplaced by it.4.2 Unless otherwise specified, when used in this guide, theterm buoyancy to weight ratio (B/W ratio) refers to the grossbuoyancy to weight ratio. Buoyancy is an indicator of a spillresponse booms ability to follow the water surface whenexposed to current forces, fouling due to mi
8、crobial growth(which adds weight), and wave conditions. Surface conditionsother than quiescent will have an adverse effect on collection orcontainment performance. When waves are present, confor-mance to the surface is essential to prevent losses. Minimumbuoyancy to weight ratios for oil spill conta
9、inment booms arespecified in Guide F1523 for various environmental conditions.4.3 This guide provides the methodology necessary todetermine the buoyancy to weight ratio using a fluid displace-ment method. This method is typically applied to boomshaving relatively low B/W ratios (in the range of 2:1
10、to 10:1).Booms with greater buoyancies may also be tested in thismanner. It is acceptable to use calculation methods to estimateboom displacement for booms with buoyancies greater than10:1, where the potential error in doing so would have a lesssignificant effect on performance.4.4 When evaluating t
11、he B/W ratio of a spill response boom,consideration must be given to the inherent properties of theboom that may affect the net B/W ratio while in use. Theseconsiderations include, but are not limited to, absorption offluids into flotation materials, membranes that are abradedduring normal use, and
12、entry of water into components of theboom.4.5 The entry of water into boom components is of particu-lar concern with booms that contain their flotation elementwithin an additional membrane. (This is the case for manybooms that use rolled-foam flotation and relatively lightweightmaterial for the boom
13、 membrane.) It is also important forbooms that have pockets that enclose cable or chain tensionmembers or ballast. When new, the membrane enclosure maycontain air that would result in increased buoyancy. In normaluse, the membrane material may be easily abraded such that itwould no longer contain ai
14、r, and water would be allowed in at1This guide is under the jurisdiction of ASTM Committee F20 on HazardousSubstances and Oil Spill Response and is the direct responsibility of SubcommitteeF20.11 on Control.Current edition approved June 1, 2012. Published June 2012. Originallyapproved in 2007. Last
15、previous edition approved in 2007 as F2682 07. DOI:10.1520/F2682-07R12E01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe
16、ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.abrasion locations. For such booms, the membrane enclosureshall not be considered as part of the flotation of the boom, andthe membrane shall be intentionally punctured to
17、allow waterto enter during the test procedure.5. Summary of Test Method5.1 Displacement MethodBuoyancy to weight ratio isestimated using two key values, the dry weight of the boomand the gross buoyancy of the boom. Weight of the boom ismeasured directly. The gross buoyancy is equal to the weight off
18、resh water displaced by a boom totally submerged. Grossbuoyancy is measured by submerging the boom, measuring thevolume of water that is displaced, and calculating the weight ofthe displaced water.6. Equipment Requirements6.1 This method requires a scale to measure the dry weightof the boom, an open
19、-top tank sufficient in volume andfootprint area to physically hold the boom section or segment,a means of submerging the test section, a fresh water supply,and a method of accurately measuring the volume of water thatis delivered to the tank. A recommended method of restrainingthe booms buoyant for
20、ce is to use a fabricated grid ofdimensional lumber or steel that fits inside the tank surfacearea. The grid would be positioned above the boom such thatit holds the boom underwater when the tank is filled.6.2 The preferred method of determining the displacementof the boom is to use a complete boom
21、section including endconnectors, tension members and ballast, and so forth. Depend-ing on the size of the boom, it may be more practical tomeasure only a portion of the boom (several segments, forexample) and to scale the results. It is helpful, but not essential,that the tank have a consistent cros
22、s-sectional area. Prior to use,the tank shall be leveled and a datum established from whichto obtain relative measurements.6.3 For accurate results, the surface area of the tank shall notgreatly exceed the area that the boom occupies within the tank.A recommended rule-of-thumb for this is that the s
23、urface areaof the tank be no greater than twice the area occupied by theboom or boom segments being tested.7. Test Method7.1 The following is a summary of the methodology formeasuring buoyancy-to-weight ratio. The methodology is in-tentionally generalized to allow the user to employ alternativetest
24、apparatus that may be readily available.7.2 Obtain the dry weight of the boom to be tested (section,segments, and/or components) and record the weight.7.3 Inspect the boom for areas that may trap air during thetest. These include: ballast chain pocket, layers of fabric sowntogether, and voids at hin
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF268220072012E1STANDARDGUIDEFORDETERMININGTHEBUOYANCYTOWEIGHTRATIOOFOILSPILLCONTAINMENTBOOM 测定 围油栏

链接地址:http://www.mydoc123.com/p-539262.html