ASTM E598-2008 923 Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient Null-Point Calorimeter《用瞬变零点量热器测量高能环境的超级传热速率的标准试验方.pdf
《ASTM E598-2008 923 Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient Null-Point Calorimeter《用瞬变零点量热器测量高能环境的超级传热速率的标准试验方.pdf》由会员分享,可在线阅读,更多相关《ASTM E598-2008 923 Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient Null-Point Calorimeter《用瞬变零点量热器测量高能环境的超级传热速率的标准试验方.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 598 08Standard Test Method forMeasuring Extreme Heat-Transfer Rates from High-EnergyEnvironments Using a Transient, Null-Point Calorimeter1This standard is issued under the fixed designation E 598; the number immediately following the designation indicates the year oforiginal adoption
2、 or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the measurement of the heat-transfer rate or the hea
3、t flux to the surface of a solid body (testsample) using the measured transient temperature rise of athermocouple located at the null point of a calorimeter that isinstalled in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique positionon the axial
4、 centerline of a disturbed body which experiencesthe same transient temperature history as that on the surface ofa solid body in the absence of the physical disturbance (hole)for the same heat-flux input.1.2 Null-point calorimeters have been used to measure highconvective or radiant heat-transfer ra
5、tes to bodies immersed inboth flowing and static environments of air, nitrogen, carbondioxide, helium, hydrogen, and mixtures of these and othergases. Flow velocities have ranged from zero (static) throughsubsonic to hypersonic, total flow enthalpies from 1.16 togreater than 4.65 3 101MJ/kg (5 3 102
6、to greater than2 3 104Btu/lb.), and body pressures from 105to greater than1.5 3 107Pa (atmospheric to greater than 1.5 3 102atm).Measured heat-transfer rates have ranged from 5.68 to2.84 3 102MW/m2(5 3 102to 2.5 3 104Btu/ft2-sec).1.3 The most common use of null-point calorimeters is tomeasure heat-t
7、ransfer rates at the stagnation point of a solidbody that is immersed in a high pressure, high enthalpy flowinggas stream, with the body axis usually oriented parallel to theflow axis (zero angle-of-attack). Use of null-point calorimetersat off-stagnation point locations and for angle-of-attack test
8、ingmay pose special problems of calorimeter design and datainterpretation.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine
9、 the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E 422 Test Method for Measuring Heat Flux Using aWater-Cooled CalorimeterE511 Test Method for Measuring Heat Flux Using aCopper-Constantan Circular Foil, Heat-Flux Transducer3. Terminology3.1 Symbol
10、s:a = Radius of null-point cavity, m (in.)b = Distance from front surface of null-point calorimeterto the null-point cavity, m (in.)Cp= Specific heat capacity, J/kgK (Btu/lb-F)d = Diameter of null-point cavity, m (in.)k = Thermal conductivity, W/mK (Btu/in.-sec-F)L = Length of null-point calorimeter
11、, m (in.)q = Calculated or measured heat flux or heat-transfer-rate,W/m2(Btu/ft2-sec)q0= Constant heat flux or heat-transfer-rate, W/m2(Btu/ft2-sec)R = Radial distance from axial centerline of TRAX ana-lytical model, m (in.)r = Radial distance from axial centerline of null-pointcavity, m (in.)T = Te
12、mperature, K (F)Tb= Temperature on axial centerline of null point, K (F)Ts= Temperature on surface of null-point calorimeter, K(F)t = Time, sec1This test method is under the jurisdiction of ASTM Committee E21 on SpaceSimulation and Applications of Space Technology and is the direct responsibility of
13、Subcommittee E21.08 on Thermal Protection.Current edition approved Dec. 1, 2008. Published January 2009. Originallyapproved in 1977. Last previous edition approved in 2002 as E 598 96 (2002).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serv
14、iceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Z = Distance in axial direction of TRAX analytical mode
15、l,m (in.)a = Thermal diffusivity, m2/sec (in.2/sec)r = Density, kg/m3(lb/in.3)4. History of Test Method4.1 From literature reviews it appears that Masters and Stein(1)3were the first to document the results of an analytical studyof the temperature effects of axial cavities drilled from thebackside o
16、f a wall which is heated on the front surface (see Fig.1). These investigators were primarily concerned with thedeviation of the temperature measured in the bottom of thecavity from the undisturbed temperature on the heated surface.Since they were not in possession of either the computingpower or th
17、e numerical heat conduction codes now available tothe analyst, Masters and Stein performed a rigorous math-ematical treatment of the deviation of the transient tempera-ture, Tb, on the bottom centerline of the cavity of radius, a, andthickness, b, from the surface temperature Ts. The results ofMaste
18、rs and Stein indicated that the error in temperaturemeasurement on the bottom centerline of the cavity woulddecrease with increasing values of a/b and also decrease withincreasing values of the dimensionless time, at/b2, where a isthe thermal diffusity of the wall material. They also concludedthat t
19、he most important factor in the error in temperaturemeasurement was the ratio a/band the error was independent ofthe level of heat flux. The conclusions of Masters and Steinmay appear to be somewhat elementary compared with ourknowledge of the null-point concept today. However, theidentification and
20、 documentation of the measurement conceptwas a major step in leading others to adapt this concept to thetransient measurement of high heat fluxes in ground testfacilities.4.2 Beck and Hurwicz (2) expanded the analysis of Mastersand Stein to include steady-state solutions and were the first tolabel t
21、he method of measurement “the null-point concept.”They effectively used a digital computer to generate relativelylarge quantities of analytical data from numerical methods.Beck and Hurwicz computed errors due to relatively largethermocouple wires in the axial cavity and were able to suggestthat the
22、optimum placement of the thermocouple in the cavityoccurred when the ratio a/b was equal to 1.1. However, theiranalysis like that of Masters and Stein was only concerned withthe deviation of the temperature in the axial cavity and did notaddress the error in measured heat flux.4.3 Howey and DiCristi
23、na (3) were the first to perform anactual thermal analysis of this measurement concept. Althoughthe explanation of modeling techniques is somewhat ambigu-ous in their paper, it is obvious that they used a finite element,two dimensional axisymmetric model to produce temperatureprofiles in a geometry
24、simulating the null-point calorimeter.Temperature histories at time intervals down to 0.010 sec wereobtained for a high heat-flux level on the surface of theanalytical model. Although the analytical results are notpresented in a format which would help the user/designeroptimize the sensor design, th
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME5982008923STANDARDTESTMETHODFORMEASURINGEXTREMEHEATTRANSFERRATESFROMHIGHENERGYENVIRONMENTSUSINGATRANSIENTNULLPOINTCALORIMETER

链接地址:http://www.mydoc123.com/p-533123.html