ASME PTC 50-2002 Fuel Cell Power Systems Performance《燃料电池电源系统性能》.pdf
《ASME PTC 50-2002 Fuel Cell Power Systems Performance《燃料电池电源系统性能》.pdf》由会员分享,可在线阅读,更多相关《ASME PTC 50-2002 Fuel Cell Power Systems Performance《燃料电池电源系统性能》.pdf(52页珍藏版)》请在麦多课文档分享上搜索。
1、 Intentionally left blank AN AMERICAN NATIONAL STANDARDFUEL CELLPOWER SYSTEMSPERFORMANCEPERFORMANCE TEST CODESASME PTC 50-2002DateofIssuance:November29,2002This Standard will be revised when the Society approves the issuance of a newedition.Therewillbenoaddendaissuedtothisedition.ASMEissueswrittenre
2、pliestoinquiriesconcerninginterpretationsoftechnicalaspectsofthisStandard.InterpretationsarepublishedontheASMEWebsiteundertheCommitteePagesathttp:/www.asme.org/codes/astheyareissued.ASMEistheregisteredtrademarkofTheAmericanSocietyofMechanicalEngineers.Thiscodeorstandardwasdevelopedunderproceduresacc
3、reditedasmeetingthecriteriaforAmericanNationalStandards.TheStandardsCommitteethatapprovedthecodeorstandardwasbalancedtoassurethat individuals from competent and concerned interests have had an opportunity to participate. Theproposedcodeorstandardwasmadeavailableforpublicreviewandcommentthatprovidesa
4、nopportunityforadditionalpublicinputfromindustry,academia,regulatoryagencies,andthepublic-at-large.ASMEdoesnot“approve,”“rate,”or“endorse”anyitem,construction,proprietarydevice,oractivity.ASMEdoesnottakeanypositionwithrespecttothevalidityofanypatentrightsassertedinconnectionwithanyitemsmentionedinth
5、isdocument,anddoesnotundertaketoinsureanyoneutilizingastandardagainstliabilityforinfringementofanyapplicableletterspatent,norassumeanysuchliability.Usersofacodeorstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,isentirelytheirownresp
6、onsibility.Participationbyfederalagencyrepresentative(s)orperson(s)affiliatedwithindustryisnottobeinterpretedasgovernmentorindustryendorsementofthiscodeorstandard.ASME accepts responsibility for only those interpretations of this document issued in accordancewiththeestablishedASMEproceduresandpolici
7、es,whichprecludestheissuanceofinterpretationsbyindividuals.Nopartofthisdocumentmaybereproducedinanyform,inanelectronicretrievalsystemorotherwise,withoutthepriorwrittenpermissionofthepublisher.TheAmericanSocietyofMechanicalEngineersThreeParkAvenue,NewYork,NY10016-5990Copyright2002byTHEAMERICANSOCIETY
8、OFMECHANICALENGINEERSAllrightsreservedPrintedinU.S.A.CONTENTSForeword . vCommitteeRoster viiBoardRoster viiiINTRODUCTION 11 ObjectandScope 21.1 2Object .1.2 2Scope 1.3 2Test Uncertainty 2 Definition and Description of Terms 32.1 3Introduction .2.2 3Fuel Cell Types .2.3 4Fuel Cell Power Systems 2.4 5
9、General Fuel Cell Nomenclature .2.5 5General Definition 3 Guiding Principles 83.1 8Introduction .3.2 8Agreements .3.3 8Test Boundary 3.4 8Test Plan .3.5 10Preparation for Test .3.6 11Parameters to be Measured or Determined During the Test Period .3.7 14Operation of the Test .3.8 14Calculation and Re
10、porting of Results .3.9 15Records 4 Instruments and Methods of Measurement . 164.1 16General Requirements .4.2 18Checklist of Instruments and Apparatus .4.3 19Determination of Outputs 4.4 20Determination of Fuel Input .4.5 22Data Collection and Handling .5 Computation of Results 235.1 23Introduction
11、 .5.2 23Computation of Inputs .5.3 27Computation of Electric Power Output .iii5.4 27Computation of Thermal and Mechanical Outputs .5.5 28Computation of Average Net Power 5.6 28Computation of Effciencies 5.7 29Correction of Test Results to Reference Conditions 6 Test Report Requirements . 316.1 31Gen
12、eral Requirements .6.2 31Executive Summary 6.3 31Introduction .6.4 31Instrumentation 6.5 31Results .6.6 32Conclusions .6.7 32Appendices .Figures2.1 Generic Fuel Cell Power System Diagram 43.1 Generic Fuel Cell System Test Boundary 93.2 Fuel Cell System Test Boundary Illustrating Internal Subsystems
13、9Tables3.1 Maximum Permissible Variations in Test Operating Conditions . 144.1 Potential Bias Limit for Heating Values . 21Mandatory AppendixI Uncertainty Analysis and Sample Calculation . 33ivFOREWORDDuringthemid1990stheimportanceofdevelopingfuelcellstandardswasrecognized.Fuel Cell power plants wer
14、e in the early stages of commercialization. Potentialapplications included vehicular power, on-site power generation, and larger scaledispersalpowergenerators.Therewasagrowingdemandtoproduceindustrystandardsthat would keep pace with the commercialization of this new technology.ASME had a very active
15、 Fuel Cell Power Systems technical committee within theAdvancedEnergySystemsDivision.Throughitsvolunteermembership,itrecommendedthe formation of a standards committee to work on developing a fuel cell standard.ASME Codes and Standard Directorate undertook this task. On October 14, 1996 theBoard on P
16、erformance Test Codes voted to approve the formation of a performancetest code committee, PTC 50.This Committee had its frst meeting on January 23-24, 1997. The membershipconsisted of some 18 fuel cell experts from Government, academia, manufacturers,andusersoffuelcells.RonaldL.Bannister;Westinghous
17、eElectricCorporation;retired,chaired the frst meeting. He had been appointed by the Board on PTC as the BoardLiaisonmembertothecommittee.Hechairedandsupervisedthecommitteesactivitiesuntil permanent offcers were elected from the membership.In the Fall 2001, the Committee issued a draft of the propose
18、d Code to Industryfor review and comment. The comments were addressed in February 2002 and theCommittee by a letter ballot voted to approve the document on March 29, 2002. Itwas then approved and adopted by the Council as a standard practice of the Societyby action of the Board on Performance Test C
19、odes voted on May 6, 2002. It wasalso approved as an American National Standard by the ANSI Board of StandardsReview on July 3, 2002.vNOTICEAll Performance Test Codes MUST adhere to the requirements of PTC 1, GENERALINSTRUCTIONS.Thefollowinginformationisbasedonthatdocumentandisincludedhereforemphasi
20、sandfortheconvenienceoftheuserofthisSupplement.Itisexpectedthat the Code user if fully cognizant of Parts I and III of PTC 1 and has read themprior to applying this Supplement.ASME Performance Test Codes provide test procedures which yield results of thehighest level ofaccuracy consistent with the b
21、estengineering knowledge and practicecurrently available. They were developed by balanced committees representing allconcerned interests. They specify procedures, instrumentation, equipment operatingrequirements, calculation methods, and uncertainty analysis.When tests are in accordance with a Code,
22、 the test results themselves, withoutadjustmentforuncertainty,yieldthebestavailableindicationoftheactualperformanceof the tested equipement. ASME Performance Test Codes do not specify means tocomparethoseresultstocontractualguarantees.Therefore,itisrecommendedthatthepartiestoacommercialtestagreebefo
23、restartingthetestandpreferablybeforesigningthecontractonthemethodtobeusedforcomparingthetestresultstothecontractualguarantees. It is beyond the scope of any Code to determine or interpret how suchcomparisons shall be made.viPERSONNELOFPERFORMANCETESTCODECOMMITTEE50FUELCELLPOWERSYSTEMSPERFORMANCE(The
24、followingistherosteroftheBoardatthetimeofapprovalofthisCode.)OFFICERSA.J.Leo,ChairK.Hecht,ViceChairJ.H.Karian,SecretaryCOMMITTEEPERSONNELD.H.Archer,CarnegieMellonUniversityP.J.Buckley,EnergyAlternativesS.Comtois,HPowerEnterprisesofCanada,Inc.J.S.Frick,SCANACorp.K.Hecht,UTCFuelCellsF.H.Holcomb,U.S.Ar
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASMEPTC502002FUELCELLPOWERSYSTEMSPERFORMANCE 燃料电池 电源 系统 性能 PDF

链接地址:http://www.mydoc123.com/p-456851.html