Chapter 17Complexation Reactions and Titrations.ppt
《Chapter 17Complexation Reactions and Titrations.ppt》由会员分享,可在线阅读,更多相关《Chapter 17Complexation Reactions and Titrations.ppt(46页珍藏版)》请在麦多课文档分享上搜索。
1、Chapter 17 Complexation Reactions and Titrations,Complex-formation reactions are widely used in analytical chemistry. One of the first uses of these reagents was for titrating cations. In addition, many complexes are colored or absorb ultraviolet radiation; the formation of these complexes is often
2、the basis for spectrophotometric determinations. Some complexes are sparingly soluble and can be used in gravimetric analysis. Complexes are also widely used for extracting cations from one solvent to another and for dissolving insoluble precipitates. The most useful complex forming reagents are org
3、anic compounds that contain several electron donor groups that form multiple covalent bonds with metal ions.,FORMING COMPLEXESMost metal ions react with electron-pair donors to form coordination compounds or complexes. The donor species, or ligand is an ion or a molecule that forms a covalent bond w
4、ith a cation or a neutral metal atom by donating a pair of electrons that are then shared by the two.The number of covalent bonds that a cation tends to form with electron donors is its coordination number. Typical values for coordination numbers are two, four, and six. The species formed as a resul
5、t of coordination can be electrically positive, neutral, or negative.,A ligand that has a single donor group, such as ammonia, is called unidentate(single-toothed), whereas one such as glycine, which has two groups available for covalent bonding, is called bidenate. Tridentate, tetradentate, pentade
6、ntate, and hexadentate chelating agents are also known.Another important type of complex, a macrocycle, is formed between a metal ion and a cyclic organic compound. The selectivity of a ligand for one metal ion over another relates to the stability of the complexes formed. The higher the formation c
7、onstant of a metal-ligand complex, the better the selectivity of the ligand for the metal relative to similar complexes formed with other metals.,Producing Soluble CompelxesComplexation reactions involve a metal ion M reacting with a ligand L to form a complex ML.M + L MLComplexation reactions occur
8、 in a stepwise fashion, and the reaction above is often followed by additional reactions:ML + L ML2ML2 + L ML3MLn-1 + L MLnUnidentate ligands invariably add in a series of steps. With multidentate ligands, the maximum coordination number of the cation may be satisfied with only one or a few added li
9、gands.,continued The equilibrium constants for complex formation reactions are generally written as formation constants.M + 2L ML2 M + 3L ML3M + nL MLnThe overall formation constants are products of the stepwise formation constants for the individual steps leading to the product.,2,3,n,Forming Insol
10、uble SpeciesThe addition of ligands to a metal ion may result in insoluble species, such as the familiar nickel-dimethylglyoxime precipitate. In many cases, the intermediate uncharged complexes in the stepwise formation scheme may be sparingly soluble, whereas the addition of more ligand molecules m
11、ay result in soluble species. AgCl is insoluble, but addition of large excess of Cl- produces soluble AgCl2-, AgCl32-, and AgCl43-.,continued In contrast to complexation equilibria, which are most often treated as formation reactions, solubility equilibria are usually treated as dissociation reactio
12、nsMxAy(s) xMy+(aq) + yAx-(aq) Ksp = My+xAx-y where, Ksp = solubility product. Hence, for BiI3, the solubility product is written Ksp = Bi3+I-3.The formation of soluble complexes can be used to control the concentration of free metal ions in solution and thus control their reactivity.,TITRATION WITH
13、INORGANIC COMPLEXING AGENTSComplexation reactions have many uses in analytical chemistry, but their classical application is in complexometric titrations. Here, a metal ion reacts with a suitable ligand to form a complex, and the equivalence point is determined by an indicator or a suitable instrume
14、ntal method. The formation of soluble inorganic complexes is not widely used for titration but the formation of precipitates is the basis for many important determinations.,Complexation TitrationsThe progress of a complexometric titration is generally illustrated by a titration curve, which is usual
15、ly a plot of pM = -logM as a function of the volume of titrant added. Most often in complexometric titrations the ligand is the titrant and the metal ion the analyte, although occasionally the reverse is true. Many precipitation titrations use the metal ion as the titrant. Most simple inorganic liga
16、nds are unidentate, which can lead to low complex stability and indistinct titration end points.,continued As titrants, multidentate ligands, particularly those having four or six donor groups, have two advantages over their unidentate counterparts. First, they generally react more completely with c
17、ations and thus provide sharper end points. Second, they ordinarily react with metal ions in a single-step process, whereas complex formation with unidentate ligands usually involves two or more intermediate species.,Precipitation Titratons (Chapter 13)Precipitation titrimetry, which is based on rea
18、ctions that yield ionic compounds of limited solubility, is one of the oldest analytical techniques. The slow rate of formation of most precipitates, however, limits the number of precipitating agents that can be used in titrations to a handful. The most widely used and important precipitating reage
19、nt, silver nitrate, which is used for the determination of the halogens, the halogen-like anions. Titrations with silver nitrate are sometimes called argentometric titrations.,The Shapes of Titration CurvesTitration curves for precipitation reactions are derived in a completely analogous way to the
20、methods described for titrations involving strong acids and strong bases. P-functions are derived for the preequivalence-point region, the postequivalence point region, and the equivalence point for a typical precipitation titraton.Most indicators for argentometric titrations respond to changes in t
21、he concentration of silver ions. As a consequence, titraton curves for precipitation reactions usually consist of a plot of pAg versus volume of AgNO3.,End Point for Argentometric TitrationsThree types of end points are: (1) chemical, (2) potentiometric, (3) amperometric. Potentiometric end points a
22、re obtained by measuring the potential. To obtain an amperometric end point, the current generated between a pair of silver microelectrodes is measured and plotted as a function of reagent volume. The chemical end point consists of a color change or the appearance or disappearance of turbidity. The
23、requirements are (1) the color change should occur over a limited range in the p-function, and (2) the color change should take place within the steep portion of the titration curve.,Formation of a Colored Precipitate The Mohr MethodSodium chromate can serve as an indicator for the argentometric det
24、ermination of chloride, bromide, and cyanide ions by reacting with silver ion to form a brick-red silver chromate (Ag2CrO4) precipitate in the equivalence-point region. The reactions involved in the determination of chloride and bromide (X-) are titration reaction: Ag+ + X- AgX(s) whiteindicator rea
25、ction: 2Ag+ + CrO42- Ag2CrO4(s) redThe solubility of silver chromate is several times grater than that of silver chloride or silver bromide.,Adsorption Indicators: The Fajans MethodAn adsorption indicator is an organic compound that tends to be adsorbed onto the surface of the solid in a precipitati
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CHAPTER17COMPLEXATIONREACTIONSANDTITRATIONSPPT
