【考研类试卷】考研数学二(线性代数)-试卷15及答案解析.doc
《【考研类试卷】考研数学二(线性代数)-试卷15及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学二(线性代数)-试卷15及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(线性代数)-试卷 15 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 是三阶矩阵,B 是四阶矩阵,且A=2,B=6,则 (分数:2.00)A.24B.-24C.48D.-483.设 A 为 mn 阶矩阵,C 为 n 阶矩阵,B=AC,且 r(A)=r,r(B)=r 1 ,则( )(分数:2.00)A.rr 1B.rr 1C.rr 1D.r 与 r 1 的关系依矩阵 C 的情况而定4.设向量组 1 , 2 , m 线性无关, 1 可由 1 ,
2、2 , m 线性表示,但 2 不可由 1 , 2 , m 线性表示,则( )(分数:2.00)A. 1 , 2 , m-1 , 1 线性相关B. 1 , 2 , m-1 , 1 , 2 线性相关C. 1 , 2 , m , 1 + 2 线性相关D. 1 , 2 , m , 1 + 2 线性无关5.设 , 为四维非零列向量,且 ,令 A= T ,则 A 的线性无关特征向量个数为( )(分数:2.00)A.1B.2C.3D.46.n 阶实对称矩阵 A 正定的充分必要条件是( )(分数:2.00)A.A 无负特征值B.A 是满秩矩阵C.A 的每个特征值都是单值D.A * 是正定矩阵二、填空题(总题数
3、:7,分数:14.00)7.A= (分数:2.00)填空项 1:_8.设 A= (分数:2.00)填空项 1:_9.设 A 是 43 阶矩阵且 r(A)=2,B= (分数:2.00)填空项 1:_10.设 1 , 2 , 3 是四元非齐次线性方程组 AX=b 的三个解向量,r(A)=3,且 1 + 2 = , 2 + 3 = (分数:2.00)填空项 1:_11.设 A 是三阶矩阵,其三个特征值为 (分数:2.00)填空项 1:_12.设 , 为三维非零列向量,(,)=3,A= T ,则 A 的特征值为 1(分数:2.00)填空项 1:_13.二次型 f(x 1 ,x 2 ,x 3 )=(x
4、1 -2x 2 ) 2 +4x 2 x 3 的矩阵为 1(分数:2.00)填空项 1:_三、解答题(总题数:13,分数:32.00)14.解答题解答应写出文字说明、证明过程或演算步骤。_15.设 A,B 为 n 阶矩阵,且 A 2 =A,B 2 =B,(A+B) 2 =A+B证明:AB=O(分数:2.00)_设 n 阶矩阵 A 满足 A 2 +2A-3E=O求:(分数:4.00)(1).(A+2E) -1 ;(分数:2.00)_(2).(A+4E) -1 (分数:2.00)_16.设 1 , m , 为 m+1 维向量,= 1 + m (m1)证明:若 1 , m 线性无关,则 - 1 ,-
5、m 线性无关(分数:2.00)_17.设向量组 (分数:2.00)_18.求方程组 (分数:2.00)_19.A nn =( 1 , 2 , n ),B nn =( 1 + 2 , 2 + 3 , n + 1 ),当 r(A)=n 时,方程组 BX=0 是否有非零解?(分数:2.00)_20.设 X 1 ,X 2 分别为 A 的属于不同特征值 1 , 2 的特征向量证明:X 1 +X 2 不是 A 的特征向量(分数:2.00)_设 A,B 为 n 阶矩阵(分数:4.00)(1).是否有 ABBA;(分数:2.00)_(2).若 A 有特征值 1,2,n,证明:ABBA(分数:2.00)_(分数
6、:4.00)(1).证明 A 可对角化;(分数:2.00)_(2).求 A m (分数:2.00)_21.用配方法化二次型 f(x 1 ,x 2 ,x 3 )=x 1 2 +x 2 x 3 为标准二次型(分数:2.00)_22.设二次型 f(x 1 ,x 2 ,x 3 )=x 1 2 +4x 2 2 +2x 3 2 +2tx 1 x 2 +2x 1 x 3 为正定二次型,求 t 的范围(分数:2.00)_二次型 f(x 1 ,x 2 ,x 3 )=x 1 2 +ax 2 x 2 +x 3 x 2 -4x 1 x 2 -8x 1 x 3 -4x 2 x 3 经过正交变换化为标准形 5y 1 2
7、+by 2 x 2 -4y 3 x 2 , 求:(分数:4.00)(1).常数 a,b;(分数:2.00)_(2).正交变换的矩阵 Q(分数:2.00)_考研数学二(线性代数)-试卷 15 答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A 是三阶矩阵,B 是四阶矩阵,且A=2,B=6,则 (分数:2.00)A.24B.-24C.48D.-48 解析:解析:3.设 A 为 mn 阶矩阵,C 为 n 阶矩阵,B=AC,且 r(A)=r,r(B)=r 1 ,则
8、( )(分数:2.00)A.rr 1B.rr 1C.rr 1 D.r 与 r 1 的关系依矩阵 C 的情况而定解析:解析:因为 r 1 =r(B)=r(AC)r(A)=r,所以选(C)4.设向量组 1 , 2 , m 线性无关, 1 可由 1 , 2 , m 线性表示,但 2 不可由 1 , 2 , m 线性表示,则( )(分数:2.00)A. 1 , 2 , m-1 , 1 线性相关B. 1 , 2 , m-1 , 1 , 2 线性相关C. 1 , 2 , m , 1 + 2 线性相关D. 1 , 2 , m , 1 + 2 线性无关 解析:解析:(A)不对,因为 1 可由向量组 1 , 2
9、 , m 线性表示,但不一定能被 1 , 2 , m-1 线 性表示,所以 1 , 2 , m-1 , 1 不一定线性相关; (B)不对,因为 1 , 2 , m-1 , 1 不一定线性相关, 2 不一定可由 1 , 2 , m-1 , 1 线性表 示,所以 1 , 2 , m-1 , 1 , 2 不一定线性相关; (C)不对,因为 2 不可由 1 , 2 , m 线性表示,而 1 可由 1 , 2 , m 线性表示,所以 1 + 2 不可由 1 , 2 , m 线性表示,于是 1 , 2 , m , 1 + 2 线性无关,选(D)5.设 , 为四维非零列向量,且 ,令 A= T ,则 A 的
10、线性无关特征向量个数为( )(分数:2.00)A.1B.2C.3 D.4解析:解析:因为 , 为非零向量,所以 A= T O,则 r(A)1, 又因为 r(A)=r( T )r()=1,所以 r(A)=1 令 AX=X,由 A 2 X= T T X=O= 2 X 得 =0, 因为 r(OE-A)=r(A)=1,所以 A 的线性无关的特征向量个数为 3,应选(C)6.n 阶实对称矩阵 A 正定的充分必要条件是( )(分数:2.00)A.A 无负特征值B.A 是满秩矩阵C.A 的每个特征值都是单值D.A * 是正定矩阵 解析:解析:A 正定的充分必要条件是 A 的特征值都是正数,(A)不对; 若
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 15 答案 解析 DOC
