【考研类试卷】考研数学一(常微分方程)-试卷6及答案解析.doc
《【考研类试卷】考研数学一(常微分方程)-试卷6及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学一(常微分方程)-试卷6及答案解析.doc(7页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(常微分方程)-试卷 6 及答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.微分方程(x 2 +y 2 )dx+(y 3 +2xy)dy=0 是 ( )(分数:2.00)A.可分离变量的微分方程B.齐次方程C.一阶线性方程D.全微分方程3.微分方程 y“-6y“+8y=e x +e 2x 的一个特解应具有形式(其中 a,b 为常数) ( )(分数:2.00)A.ae x +be 2xB.ae x +bxe 2xC.axe x +be 2xD.aze x +
2、bxe 2x4.微分方程 y“+2y“+2y=e -x sinx 的特解形式为 ( )(分数:2.00)A.e -x (Acosx+Bsinx)B.e -x (Acosx+Bxsinx)C.xe -x (Acosx+Bsinx)D.e -x (Axcosx+Bsinx)5.微分方程 的通解是 ( ) (分数:2.00)A.B.C.D.6.微分方程 y“-4y“+4y=x 2 +8e 2x 的一个特解应具有形式(a,b,c,d 为常数) ( )(分数:2.00)A.ax 2 +bx+ce 2xB.ax 2 +bx+c+dx 2 e 2xC.ax 2 +bx+cxe 2xD.ax 2 +(bx 2
3、 +cx)e 2x二、填空题(总题数:8,分数:16.00)7.微分方程 3e x tanydx+(1-e x )sec 2 ydy=0 的通解是 1(分数:2.00)填空项 1:_8.微分方程 y“tanx=ylny 的通解是 1(分数:2.00)填空项 1:_9.微分方程(6x+y)dx+xdy=0 的通解是 1(分数:2.00)填空项 1:_10.微分方程 (分数:2.00)填空项 1:_11.微分方程的通解 1 包含了所有的解(分数:2.00)填空项 1:_12.微分方程(y 2 +1)dx=y(y-2x)dy 的通解是 1(分数:2.00)填空项 1:_13.设一阶非齐次线性微分方程
4、 y“+p(x)y=Q(x)有两个线性无关的解 y 1 ,y 2 ,若 y 1 +y 2 也是该方程的解,则应有 += 1(分数:2.00)填空项 1:_14.微分方程 y“-7y“=(x-1) 2 的待定系数法确定的特解形式(系数的值不必求出)是 1(分数:2.00)填空项 1:_三、解答题(总题数:16,分数:32.00)15.解答题解答应写出文字说明、证明过程或演算步骤。_16.求微分方程 y“cosy=(1+cosxsiny)siny 的通解(分数:2.00)_17.求微分方程 y“-2y“-e 2x =0 满足条件 y(0)=1,y“(0)=1 的特解(分数:2.00)_18.求二阶
5、常系数线性微分方程 y“+y“=2x+1 的通解,其中 为常数(分数:2.00)_19.求微分方程 y“+2y“+y=xe x 的通解(分数:2.00)_20.求微分方程 y“+5y“+6y=2e -x 的通解(分数:2.00)_21.求微分方程(3x 2 +2xy-y 2 )dx+(x 2 -2xy)dy=0 的通解(分数:2.00)_22.设 y(x)是方程 y (4) -y“=0 的解,且当 x0 时,y(x)是 x 的 3 阶无穷小,求 y(x)(分数:2.00)_23.求一个以 y 1 =te“,y 2 =sin2t 为其两个特解的四阶常系数齐次线性微分方程,并求其通解(分数:2.0
6、0)_一链条悬挂在一钉子上,启动时一端离开钉子 8m,另一端离开钉子 12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:(分数:4.00)(1).不计钉子对链条的摩擦力;(分数:2.00)_(2).若摩擦力为常力且其大小等于 2m 长的链条所受到的重力(分数:2.00)_24.求解 y“=e 2y +e y ,且 y(0)=0,y“(0)=2(分数:2.00)_25.求方程 (分数:2.00)_26.求微分方程 (分数:2.00)_27.求方程 (分数:2.00)_28.求(y 3 -3xy 2 -3x 2 y)dx+(3xy 2 -3x 2 y 3 -x 3 +y 2 )dy=0 的
7、通解(分数:2.00)_29.求微分方程 y“(3y“ 2 -x)=y“满足初值条件 y(1)=y“(1)=1 的特解(分数:2.00)_考研数学一(常微分方程)-试卷 6 答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.微分方程(x 2 +y 2 )dx+(y 3 +2xy)dy=0 是 ( )(分数:2.00)A.可分离变量的微分方程B.齐次方程C.一阶线性方程D.全微分方程 解析:解析:由 Q“ x =2y=P“ y 及(A),(B),(C)均不符合即知
8、3.微分方程 y“-6y“+8y=e x +e 2x 的一个特解应具有形式(其中 a,b 为常数) ( )(分数:2.00)A.ae x +be 2xB.ae x +bxe 2x C.axe x +be 2xD.aze x +bxe 2x解析:解析:由原方程对应齐次方程的特征方程 r 2 -6r+8=0 得特征根 r 1 =2,r 2 =4 又 f 1 (x)=e x ,=1 非特征根,对应特解为 y 1 *=ae;f 2 (x)=e 2x ,=2 为特征单根,对应特解为 y 2 *=bxe 2x 故原方程特解的形式为 ae x +bxe 2x ,即(B)4.微分方程 y“+2y“+2y=e
9、-x sinx 的特解形式为 ( )(分数:2.00)A.e -x (Acosx+Bsinx)B.e -x (Acosx+Bxsinx)C.xe -x (Acosx+Bsinx) D.e -x (Axcosx+Bsinx)解析:解析:特征方程为 r 2 +2r+2=0 即(r+1) 2 =-1,解得特征根为 r 1,2 =-1i而 i=-1i 是特征根,特解 y * =xe -x (Acosx+Bsinx)5.微分方程 的通解是 ( ) (分数:2.00)A.B.C. D.解析:解析:原方程写成 积分得6.微分方程 y“-4y“+4y=x 2 +8e 2x 的一个特解应具有形式(a,b,c,d
10、 为常数) ( )(分数:2.00)A.ax 2 +bx+ce 2xB.ax 2 +bx+c+dx 2 e 2x C.ax 2 +bx+cxe 2xD.ax 2 +(bx 2 +cx)e 2x解析:解析:对应特征方程为 r 2 -4r+4=0,特征根是 r 1,2 =2而 f 1 =x 2 , 1 =0 非特征根,故 y* 1 =ax 2 +bx+c又 f 2 =8e 2x , 2 =2 是二重特征根,所以 y* 2 =dx 2 e 2x y* 1 与 y* 2 合起来就是特解,选(B)二、填空题(总题数:8,分数:16.00)7.微分方程 3e x tanydx+(1-e x )sec 2
11、ydy=0 的通解是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:tany=C(e x -1) 3 ,其中 C 为任意常数)解析:解析:方程分离变量得 8.微分方程 y“tanx=ylny 的通解是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:y=e Csinx ,其中 C 为任意常数)解析:解析:原方程分离变量,有 9.微分方程(6x+y)dx+xdy=0 的通解是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:3x 2 +xy=C,其中 C 为任意常数)解析:解析:原方程兼属一阶线性方程、齐次方程、全微分方程 方法一 原方程化为 由一阶线性方程的通解
12、公式得 10.微分方程 (分数:2.00)填空项 1:_ (正确答案:正确答案:y=(C 1 +C 2 )e x +1,其中 C 1 ,C 2 为任意常数)解析:解析:原方程为二阶常系数非齐次线性微分方程 其通解为 y=y 齐 +y*,其中 y 齐 是对应齐次方程的通解,y*是非齐次方程的个特解 因原方程对应齐次方程的特征方程为 r 2 -2r+1=0,即(r-1) 2 =0,特征根为 r 1,2 =1故 y=(C 1 +C 2 x)C,其中 C 1 ,C 2 为任意常数又据观察,显然 y*=1 与 y 齐 合并即得原方程通解11.微分方程的通解 1 包含了所有的解(分数:2.00)填空项 1
13、:_ (正确答案:正确答案:不一定)解析:解析:例如方程(y 2 -1)dx=(x-1)ydy,经分离变量有 12.微分方程(y 2 +1)dx=y(y-2x)dy 的通解是 1(分数:2.00)填空项 1:_ (正确答案:正确答案: )解析:解析:方法一 原方程化为 由通解公式得 方法二 原方程写为(y 2 +1)dx+(2x-y)ydy=0,是全微分方程,再改写为(y 2 +1)dx+xd(y 2 +1)-y 2 dy=0,即 dx(y 2 +1)=y 2 ddy, 13.设一阶非齐次线性微分方程 y“+p(x)y=Q(x)有两个线性无关的解 y 1 ,y 2 ,若 y 1 +y 2 也是
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 微分方程 答案 解析 DOC
