(江苏专用)2019高考数学二轮复习专题一三角函数和平面向量第3讲平面向量课件.pptx
《(江苏专用)2019高考数学二轮复习专题一三角函数和平面向量第3讲平面向量课件.pptx》由会员分享,可在线阅读,更多相关《(江苏专用)2019高考数学二轮复习专题一三角函数和平面向量第3讲平面向量课件.pptx(25页珍藏版)》请在麦多课文档分享上搜索。
1、第3讲 平面向量,第3讲 平面向量,1.如图,在66的方格纸中,若起点和终点均在格点的向量a, b,c满足c=xa+yb(x, yR),则x2+y2= .,答案 5,解析 a=(1,2),b=(2,-1),c=(3,4),由c=xa+yb得 解得 则x2+y2=5.,2.若a,b,c都是单位向量,且ab,则(a+b+2c)c的最大值为 .,答案 2+,解析 由题意可设a=(1,0),b=(0,1),c=(cos ,sin ),则(a+b+2c)c=(1+2cos ,1+2 sin )(cos ,sin )=(1+2cos )cos +(1+2sin )sin =cos +sin +2= sin
2、 +22+ ,当且仅当= +2k,kZ时取等号,故(a+b+2c)c的最大值为2+.,3.若向量a=(cos ,sin ),b=(cos ,sin ),且|a+b|2ab,则cos(-)= .,答案 1,解析 由|a+b|2ab两边平方得|a|2+2ab+|b|24(ab)2.又ab=cos(-)0,所 以4cos2(-)-2cos(-)-20,2cos(-)+1cos(-)-10,则cos(-)1.又-1 cos(-)1,则cos(-)=1.,4.已知向量e1,e2是夹角为 的两个单位向量,向量a=e1-e2,b=ke1+e2,若ab=0,则 k的值为 .,答案 1,解析 |e1|=|e2|
3、=1,e1e2=- ,ab=(e1-e2)(ke1+e2)=k|e1|2+(1-k)e1e2-|e2|2=k- (1-k)-1=0, 解得k=1.,题型一 平面向量的线性运算,例1 设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将 用 和 表示; (2)若A、B、C三点能构成三角形,求实数m应满足的条件.,【方法归纳】 (1)向量的线性运算有加法、减法、数乘,运算方法有几何法 (三角形法则和平行四边形法则)和代数法(坐标法);(2)向量共线定理:非零向 量a=(x1,y1),b=(x2,y2),aba=bx1y2-x2y1=0.,1-1 (2018江苏南通中学高三考前
4、冲刺)如图,在梯形ABCD中, ABCD, AB=3 CD,点E是B,C的中点.若 =x +y ,其中x,yR,则x+y的值为 .,答案,解析 2 = + =3 + =3 - + =4 -3 ,则 = + ,则x+y= + = .,题型二 平面向量的数量积,例2 (1)(2018江苏盐城模拟)如图,在AB1B8中,已知B1AB8= ,AB1=6,AB8= 4,点B2,B3,B4,B5,B6,B7分别为边B1B8的7等分点,则当i+j=9(1i8)时, 的 最大值为 .,(2)(2018江苏扬州调研)如图,已知AC=2,B为AC的中点,分别以AB,AC为直径 在AC同侧作半圆,M,N分别为两半圆
5、上的动点(不含端点A,B,C)且BMBN,则 的最大值为 .,答案 (1) (2),解析 (1)在AB1B8中,B1AB8= ,AB1=6,AB8=4,由余弦定理可得B1B8=2 .取 B1B8的中点D,则| |= = = , = + - =| |2-| |2=19-| |2,当 最大时,| |2最小,则i=4或5,此时|2= 2= , 则 的最大值为19- = . (2)由题意可得BMBN,AMB=90,则AMBN.因为AC=2,B为AC的中点,所,以BN=BC=BA=1. 设NBC=MAB=, ,则 = ( - )= - =| |-| | |cos =| |-| |2=- + ,当| |=
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2019 高考 数学 二轮 复习 专题 三角函数 平面 向量 课件 PPTX
