ASTM E2059-2006(2010) Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry《快中子剂量测定用核研究乳剂的应用和分析的标准操作规程》.pdf
《ASTM E2059-2006(2010) Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry《快中子剂量测定用核研究乳剂的应用和分析的标准操作规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM E2059-2006(2010) Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry《快中子剂量测定用核研究乳剂的应用和分析的标准操作规程》.pdf(18页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E2059 06 (Reapproved 2010)Standard Practice forApplication and Analysis of Nuclear Research Emulsions forFast Neutron Dosimetry1This standard is issued under the fixed designation E2059; the number immediately following the designation indicates the year oforiginal adoption or, in the c
2、ase of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 Nuclear Research Emulsions (NRE) have a long andillustrious history of applications in th
3、e physical sciences, earthsciences and biological sciences (1,2)2. In the physical sci-ences, NRE experiments have led to many fundamental dis-coveries in such diverse disciplines as nuclear physics, cosmicray physics and high energy physics. In the applied physicalsciences, NRE have been used in ne
4、utron physics experimentsin both fission and fusion reactor environments (3-6). Numer-ous NRE neutron experiments can be found in other applieddisciplines, such as nuclear engineering, environmental moni-toring and health physics. Given the breadth of NRE applica-tions, there exist many textbooks an
5、d handbooks that provideconsiderable detail on the techniques used in the NRE method.As a consequence, this practice will be restricted to theapplication of the NRE method for neutron measurements inreactor physics and nuclear engineering with particular empha-sis on neutron dosimetry in benchmark f
6、ields (see MatrixE706).1.2 NRE are passive detectors and provide time integratedreaction rates. As a consequence, NRE provide fluence mea-surements without the need for time-dependent corrections,such as arise with radiometric (RM) dosimeters (see TestMethod E1005). NRE provide permanent records, so
7、 thatoptical microscopy observations can be carried out anytimeafter exposure. If necessary, NRE measurements can be re-peated at any time to examine questionable data or to obtainrefined results.1.3 Since NRE measurements are conducted with opticalmicroscopes, high spatial resolution is afforded fo
8、r fine struc-ture experiments. The attribute of high spatial resolution canalso be used to determine information on the angular anisot-ropy of the in-situ neutron field (4,5,7). It is not possible foractive detectors to provide such data because of in-situperturbations and finite-size effects (see S
9、ection 11).1.4 The existence of hydrogen as a major constituent ofNRE affords neutron detection through neutron scattering onhydrogen, that is, the well known (n,p) reaction. NRE mea-surements in low power reactor environments have beenpredominantly based on this (n,p) reaction. NRE have alsobeen us
10、ed to measure the6Li (n,t)4He and the10B(n,a)7Lireactions by including6Li and10B in glass specks near themid-plane of the NRE (8,9). Use of these two reactions doesnot provide the general advantages of the (n,p) reaction forneutron dosimetry in low power reactor environments (seeSection 4).As a cons
11、equence, this standard will be restricted tothe use of the (n,p) reaction for neutron dosimetry in low powerreactor environments.1.5 LimitationsThe NRE method possesses three majorlimitations for applicability in low power reactor environ-ments.1.5.1 Gamma-Ray SensitivityGamma-rays create a sig-nifi
12、cant limitation for NRE measurements.Above a gamma-rayexposure of approximately 3R, NRE can become fogged bygamma-ray induced electron events. At this level of gamma-ray exposure, neutron induced proton-recoil tracks can nolonger be accurately measured. As a consequence, NREexperiments are limited t
13、o low power environments such asfound in critical assemblies and benchmark fields. Moreover,applications are only possible in environments where thebuildup of radioactivity, for example, fission products, islimited.1.5.2 Low Energy LimitIn the measurement of tracklength for proton recoil events, tra
14、ck length decreases asproton-recoil energy decreases. Proton-recoil track length be-low approximately 3 in NRE can not be adequately measuredwith optical microscopy techniques. As proton-recoil tracklength decreases below approximately 3, it becomes verydifficult to measure track length accurately.
15、This 3 tracklength limit corresponds to a low energy limit of applicabilityin the range of approximately 0.3 to 0.4 MeV for neutroninduced proton-recoil measurements in NRE.1This practice is under the jurisdiction of ASTM Committee E10 on NuclearTechnology and Applications , and is the direct respon
16、sibility of SubcommitteeE10.05 on Nuclear Radiation Metrology.Current edition approved Oct. 1, 2010. Published November 2010. Originallyapproved in 2000. Last previous edition approved in 2006 as E2059 - 06. DOI:10.1520/E2059-10.2The boldface numbers in parentheses refer to the list of references at
17、 the end ofthe text.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.1.5.3 High-Energy LimitsAs a consequence of finite-sizelimitations, fast-neutron spectrometry measurements are lim-ited to #15 MeV. The limit for in-situ spectrometr
18、y in reactorenvironments is #8MeV.1.5.4 Track Density LimitThe ability to measure protonrecoil track length with optical microscopy techniques dependson track density. Above a certain track density, a maze orlabyrinth of tracks is created, which precludes the use ofoptical microscopy techniques. For
19、 manual scanning, thislimitation arises above approximately 104tracks/cm2, whereasinteractive computer based scanning systems can extend thislimit up to approximately 105tracks/cm2. These limits corre-spond to neutron fluences of 106107cm2, respectively.1.6 Neutron Spectrometry (Differential Measure
20、ments)For differential neutron spectrometry measurements in lowpower reactor environments, NRE experiments can be con-ducted in two different modes. In the more general mode, NREare irradiated in-situ in the low power reactor environment.This mode of NRE experiments is called the 4p mode, sincethe i
21、n-situ irradiation creates tracks in all directions (see 3.1.1).In special circumstances, where the direction of the neutronflux is known, NRE are oriented parallel to the direction of theneutron flux. In this orientation, one edge of the NRE faces theincident neutron flux, so that this measurement
22、mode is calledthe end-on mode. Scanning of proton-recoil tracks is differentfor these two different modes. Subsequent data analysis is alsodifferent for these two modes (see 3.1.1 and 3.1.2).1.7 Neutron Dosimetry (Integral Measurements)NREalso afford integral neutron dosimetry through use of the (n,
23、p)reaction in low power reactor environments. Two differenttypes of (n,p) integral mode dosimetry reactions are possible,namely the I-integral and the J-integral (10,11). Proton-recoiltrack scanning for these integral reactions is conducted in adifferent mode than scanning for differential neutron s
24、pectrom-etry (see 3.2). Integral mode data analysis is also different thanthe analysis required for differential neutron spectrometry (see3.2). This practice will emphasize NRE (n,p) integral neutrondosimetry, because of the utility and advantages of integralmode measurements in low power benchmark
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME205920062010STANDARDPRACTICEFORAPPLICATIONANDANALYSISOFNUCLEARRESEARCHEMULSIONSFORFASTNEUTRONDOSIMETRY

链接地址:http://www.mydoc123.com/p-530167.html