ASHRAE 4716-2004 Effect of Boundary Condition on the Prediction of Temperature Distribution for Curtain Walls《为玻璃幕墙用温度分布预报边界条件效果》.pdf
《ASHRAE 4716-2004 Effect of Boundary Condition on the Prediction of Temperature Distribution for Curtain Walls《为玻璃幕墙用温度分布预报边界条件效果》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE 4716-2004 Effect of Boundary Condition on the Prediction of Temperature Distribution for Curtain Walls《为玻璃幕墙用温度分布预报边界条件效果》.pdf(9页珍藏版)》请在麦多课文档分享上搜索。
1、471 6 Effect of Boundary Conditions on the Prediction of Temperature Distribution for Curtain Walls Hua Ge, Ph.D., P.Eng. ABSTRACT Previous studies have indicated that the application of variable local film coejcients can improve the accuracy of temperature predictions for fenestration systems using
2、 two- dimensional programs, such as FRAME and THERM. Howevel; the discrepancy between simulation and test results for metalframed windows is relatively large, e.g., a typical 5OC (9F) discrepancy may exist in theframe area. One of thepossi- ble reasons was believed to be the lack of test data that w
3、ere reported with accurate measurement locations and test condi- tions. In a comprehensive experimental study carried out by the authors on the overallperformance of metal curtain walls, extensive temperature measurements enabled more accurate comparison between simulations and tests. Several sets o
4、f boundary conditions were assigned to the sill sections of two diferent curtain wall systems in the FRAME simulations. The variation of local film coejicients along the room-side frame surface was considered. The comparison between simulation results and test data indicates that the proper applicat
5、ion of more realistic bound- ary conditions can greatly improve the accuracy of computer simulations in predicting the temperature distributions and thus the condensation resistance performance for fenestration systems. The application of localfilm coejicients to the frame surface reduces significan
6、tly the discrepancy between simu- lation and test results to within fO.5OC (kO.9“F) for the stan- dard curtain wall system and to within +2OC (+3.6“F) for the highly insulated system. These improvements confirm the importance of assigning more realistic boundary conditions to the frame area for meta
7、l-framed fenestration systems. The results also suggest that the convection motion in the glazing cavity should be considered in order to obtain more accurate results for edge-ofglass in simulations. Paul Fazio, Ph.D, P.Eng. INTRODUCTION Condensation resistance is an important factor in the eval- ua
8、tion of the thermal performance of fenestration systems. The occurrence of condensation can cause higher energy consumption due to latent loads, deterioration of materials sensitive to water, and indoor air quality problems (bacterial or mold growth associated with the appearance of water). Condensa
9、tion on fenestration products is the number one source of fenestration product complaints (Dariush et al. 2001). Computer programs such as VISION/FRAME (EEL 1995) and WINDOW/THERhUOptics (LBL 1998) are inte- gral parts of the Canadian standards (CSA 2000) and Ameri- can standards (NFRC 2001) for rat
10、ing fenestration products. FRAME and THERM are two-dimensional programs to model the heat transfer through edge-of-glass and frame areas of the fenestration systems. Programs VISION and WINDOW/Optics are used to model the one-dimensional heat transfer, solar transmittance, and visible transmittance
11、through the center-of-glass. These programs have been vali- dated as a standardized alternative ofphysical tests to calculate the overall thermal transmittance (U-factor), solar heat gain coeficient (SHGC), and visible transmittance. However, the accuracy of these programs in predicting the condensa
12、tion resistance is still being validated and the simulation procedure is still under development. Laboratory physical test remains the only reliable means to determine the condensation resis- tance performance for fenestration products. A great deal of effort has been made in understanding and impro
13、ving the accuracy in predicting temperature distribu- tions over fenestration systems by simulations. In the U-factor calculations using the programs VISION/FRAME and H. Ge is a postdoctoral fellow and P. Fazio is a professor in the Building Envelope Performance Laboratory, Center for Building Studi
14、es, Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. 02004 ASHRAE. 249 r0.7m I1 6.0171 -1 t- 3.6m hot box Figure I The experimental setup in the environmental chamber: WINDOW/THERM, an “effective conductivity“ is assigned for the glazing c
15、avity or for the frame cavity to account for the convective and radiative heat transfer, and constant film coef- ficients are applied to both interior and exterior surfaces as boundary conditions. This procedure yields good agreement between the simulated and tested U-factors. However, a large discr
16、epancy exists in temperature predictions, especially at the edge-of-glass and frame areas. By using a detailed convection/ radiation model in the glazing cavity, the accuracy of simula- tion was improved to within 1 “C to 2C (1 3F to 3.6“F) for the edge-of-glass surface (McGowan 1995; Zhao et al. 19
17、96). The simplification of using a constant surface film coefficient is believed to be another reason for the discrepancy (Sullivan, et al. 1996; de Abreu et al. 1996). Some numerical and experi- mental studies have been conducted to quantify the local film coefficients along fenestration surfaces (
18、Curcija and Goss 1993, 1995; Schrey et al. 1998; Griffith et al. 1998). Curcija et al. (1998) reported that the simulations with variable local film coefficients on both interior and exterior surfaces gave the best results for an IGU (insulated glazing unit) and a wood-framed window. McGowan and Wri
19、ght (1998) reported similar find- ings for most windows examined except for those with metal frames. Typically, the simulations predicted a 3C (5.4“F) warmer surface temperature for the frame area, with a worst case of 5C (9F) for an aluminum frame. In their study, the edge-of-glass portion (63.5 mm
20、) was divided into five segments and a constant film coefficient was assumed over each segment. The convective portion of the film coefficient was assumed to vary linearly between zero at the sightline and the value at center-of-glass over the length of 63.5 mm (2.5 in.). The radiative portion of th
21、e film coefficient accounted for the heat exchange with the frame surface. However, no local film coefficient was applied to the frame area. The poor agreement between simulation and test results for aluminum frame windows was noted by other studies as well (McGowan 1995; Carpenter 2001). thin strip
22、 of flexible PVC I high-performance GU i/ I reinforced nylon nose revised backpan Figure2 Sill sections of the curtain wall systems simulated: (a) system A and (6) system B. In a comprehensive study on the overall performance of metal curtain walls, the authors measured the detailed temper- ature di
23、stributions throughout the test specimen and deter- mined the variable local film coefficients on the room side either by measurements or by analysis. The accurately reported locations of temperature measurements and test conditions make possible a more accurate comparison between test and simulatio
24、n results. This paper explores how the local variation in film coefficients on both the edge-of- glass and frame areas improves the accuracy of simulation for the sill sections of metal curtain walls. TEST PROCEDURE A two-story full-size test specimen including two different curtain wall designs was
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAE47162004EFFECTOFBOUNDARYCONDITIONONTHEPREDICTIONOFTEMPERATUREDISTRIBUTIONFORCURTAINWALLS 玻璃 幕墙

链接地址:http://www.mydoc123.com/p-454299.html