ANSI HPS N13.45-2012 Incineration of Low-Level Radioactive Waste.pdf
《ANSI HPS N13.45-2012 Incineration of Low-Level Radioactive Waste.pdf》由会员分享,可在线阅读,更多相关《ANSI HPS N13.45-2012 Incineration of Low-Level Radioactive Waste.pdf(27页珍藏版)》请在麦多课文档分享上搜索。
1、 American National Standard ANSI/HPS N13.45-2012 Incineration of Low-Level Radioactive Waste Approved: February 17, 2012 American National Standards Institute, Inc. Published by Health Physics Society 1313 Dolley Madison Blvd. Suite 402 McLean, VA 22101 Copyright 2012 by the Health Physics Society.
2、All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. Printed in the United States of America ANSI/HPS N13.45-2012 iii This standard was developed under the authority of the H
3、ealth Physics Society Accredited Standards Committee (ASC) N13, Radiation Protection. The Working Group responsible for this standard had the following members: Vincent P. Williams, Chairperson (Merck LSC, liquid scintillation cocktail; BW, biological waste; CSW, combustible solid waste. Notes aDete
4、rmine whether CLW or LSC is classified as hazardous as defined by current EPA or state regulations. bCan be incinerated if a Resource Conservation and Recovery Act (RCRA) Part B permit has been obtained. cDetermine whether LSC or BW may be disposed of as though it were not radioactive. dWhen effluen
5、t concentrations approach concentration limits, activity incinerated may need to be reduced. eAqueous wastes must meet NRCs solubility criteria prior to sewer disposal. ANSI/HPS N13.45-2012 6 4.2 Classification of Wastes Characteristics of LLW to be considered in a classification scheme for incinera
6、tion should include physical form, combustibility, possibility of decomposition, and hazards other than radiological. The physical forms of LLW are generally categorized as solid or liquid. Combustibility refers to the degree of oxidation that occurs during incineration. The possibility of decomposi
7、tion is associated with biological residues, tissues, body fluids and wastes, and animal carcasses. The primary hazards other than radiological are the infectious and chemical properties of the waste. Occupational hazards associated with waste handling such as mechanical injuries, lacerations, punct
8、ure wounds, and back strains are not addressed in this standard. 4.3 Effluent Concentrations The maximum activity (Amax) for a single radionuclide that may be incinerated in a specified period of time is limited by concentration limits for radionuclides in gaseous effluent and ash or by the maximum
9、permissible dose to the nearest receptor as determined by modeling (see Section 8.2). 4.3.1 Gaseous Effluent Concentrations The following formula may be used to determine the maximum activity (Amax) that can be incinerated in one year based on a concentration limit in the gaseous effluent: Amax= CFT
10、/R (1) where: C = concentration limit averaged over 1 yr (Bq cm3)*, F = stack effluent rate (cm3s1), T = number of seconds in one year, and R = fraction of the incinerated radioactivity emitted from the stack. *Usually this value will either be specified in regulations/license conditions or can be d
11、etermined using models that calculate radiation doses to nearby residents. Although incineration of activity equal to Amaxin a single day will give the same average annual concentration as incinerating Amaxthroughout the year, an upper limit for Amaxshould be established for a single incineration cy
12、cle (e.g., 1/12th of Amax). Furthermore, the year-to-date fraction of Amaxshould be determined after each incineration cycle to ensure Amaxis not exceeded over the course of the year. Since the volume of gases released is infinitesimal compared to the volume of the atmosphere, it is assumed for purp
13、oses of this equation that the incinerator is operated continuously, regardless of the actual incinerator on-time. Therefore, T is set to be equal to the number of seconds in one year. Use of eqn (1) requires that the concentration limit be applied to the point of release (i.e., at the top of the in
14、cinerator stack). This application provides a conservative estimate because the receptor is not present at the point of release but is some distance away. Alternatively, the radiation exposure to, or the concentration limit in the vicinity of, a receptor can be used to determine the maximum activity
15、 (Amax) that can be incinerated. Section 8.2 discusses methods for determining radionuclide concentrations in the incinerator effluent. 4.3.2 Ash Concentrations The radionuclide concentration in ash will depend on the activity placed in the incinerator, the volatility of the radioactive compound, an
16、d the volume of ash produced. Generally speaking, ash that contains high concentrations of radionuclides shall be shipped to a licensed LLW disposal site as indicated in Fig. 1. Low concentrations may be disposed of in a local landfill if permitted by local and state regulations or permits. The actu
17、al disposal of ash from a LLW incinerator is beyond the scope of this standard, and readers are referred to pertinent local, state, and federal regulations, and limitations specified in the facilitys radioactive materials license (see Section 9.2). 4.3.3 Limits for Multiple Radionuclides When the LL
18、W to be incinerated contains ANSI/HPS N13.45-2012 7 more than one radionuclide, the sum of the ratios of the activity to be incinerated and the corresponding concentration limit for each radionuclide shall not exceed unity. The following formula can be used to demonstrate compliance: (Ai /Amax(i) 1,
19、 (2) where Ai is the activity incinerated for the ithradionuclide and Amax(i)is the maximum activity of the ithradionuclide that can be incinerated within a specified time period. 4.3.4 Storage for Decay Radioactive waste may be stored for decay to reduce radioactivity to levels that are ALARA. Stor
20、age of LLW for radioactive decay is an important aspect of any LLW management program. Whether a particular class of waste should be held for decay depends on quantity and radioactive half-life of the radionuclides in the waste, available storage space, and special requirements for storage such as r
21、efrigeration, shielding, appropriate ventilation, corrosion resistance, and requirements for fire protection. A thorough discussion of storage-for-decay is beyond the scope of this standard, but each institution should examine its waste types and storage capabilities to determine the quantity of LLW
22、 that should be held for decay. 4.3.5 ALARA Considerations It is important to maintain ALARA radiation exposures to radioactive waste handlers, incinerator operators, and the general public. To that end, procedures should be implemented to minimize the release of radionuclides to the environment to
23、the lowest practicable level. Such procedures may include storing short-lived radionuclides for several half-lives prior to incineration to minimize the activity released. This approach is particularly important for radionuclides for which a significant fraction is released during the incineration p
24、rocess. Decaying short-lived radionuclides usually does not come without expense. The costs associated with storage space (heating, maintenance, etc.) should be considered against the volume and total activity of short-lived radioactive waste generated. It may be cheaper and less laborious and minim
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIHPSN13452012INCINERATIONOFLOWLEVELRADIOACTIVEWASTEPDF

链接地址:http://www.mydoc123.com/p-434866.html