ANSI HPS N13.44-2014 Thyroid Phantom Used in Occupational Monitoring.pdf
《ANSI HPS N13.44-2014 Thyroid Phantom Used in Occupational Monitoring.pdf》由会员分享,可在线阅读,更多相关《ANSI HPS N13.44-2014 Thyroid Phantom Used in Occupational Monitoring.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、 American National Standard ANSI/HPS N13.44-2014 Thyroid Phantom Used in Occupational Monitoring Approved 28 August 2014 American National Standards Institute, Inc. Published by Health Physics Society 1313 Dolley Madison Blvd. Suite 402 McLean, VA 22101 Copyright 2014 by the Health Physics Society.
2、All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. Printed in the United States of America ANSI/HPS N13.44-2014 The Health Physics Society Standards Committee Working Group
3、 responsible for this standard wishes to acknowledge previous members of this working group without whose efforts this standard would not have been achieved. The current working group had the following members: Michael W. Mallett, Chair Los Alamos National Laboratory Wesley E. Bolch University of Fl
4、orida Philip C. Fulmer Francis Marion University Tracy M. Jue California Department of Public Health David E. McCurdy Technical Consultant Mike Pillay Medical Center The Hague X. George Xu Rensselaer Polytechnic Institute ii This standard was consensus balloted and approved by Accredited Standards C
5、ommittee (ASC) N13 on 26 June 2014. At the time of balloting, the Committee had the following membership: Chairperson Michelle L. Johnson American Association of Physicians in Medicine Robert A. Phillips (AAPM) Lynne Fairobent (alternate) American College of Occupational and Environmental Medicine B
6、ryce Breitenstein American Industrial Hygiene Association (AIHA) Ray Johnson American Iron and Steel Institute Anthony La Mastra American Mining Congress Scott C. Munson American Nuclear Insurers Marcia Anderson Bob Oliveira (alternate) American Nuclear Society (ANS) Ali Simpkins Conference of Radia
7、tion Control Program Directors (CRCPD) Earl Fordham Council on Ionizing Radiation Measurements and Standards (CIRMS) Chris Soares Council on Radionuclides and Radiopharmaceuticals, Inc. (CORAR) Leonard Smith Health Physics Society (HPS) Sandy Perle Wayne Glines (alternate) Institute of Electrical an
8、d Electronic Engineers (IEEE) Mike Unterweger Institute of Nuclear Materials Management (INMM) Skip (Harrison) Kerschner National Council on Radiation Protection and Measurements (NCRP) James Cassata National Registry of Radiation Protection Technologists (NRRPT) Dwaine Brown Nuclear Energy Institut
9、e (NEI) Ralph L. Andersen Ellen Anderson (alternate) U.S. Department of Commerce Thomas J. McGiff Janna P. Shupe (alternate) U.S. Department of Energy Steve Zobel Judy Foulke (alternate) U.S. Department of Defense Tim Mikulski John Cuellar (alternate) U.S. Department of Homeland Security Peter Chiar
10、o U.S. Environmental Protection Agency Mike Boyd U.S. Nuclear Regulatory Commission Donald A. Cool U.S. Navy Jerry N. Sanders Individual member Eric Darois Individual member Tracy Ikenberry Individual member Greg Komp Individual member Joseph P. Ring Individual member L. Max Scott Individual member
11、Toshihide Ushino iii Contents Foreword iv 1.0 Purpose and Scope 1 1.1 Introduction . 1 1.2 Purpose . 1 1.3 Scope 1 2.0 Definitions . 1 3.0 Specifications of the Thyroid Phantom 2 3.1 Radioactive Material Content . 2 4.0 Physical Phantom . 3 4.1 IAEA/ANSI Neck (Thyroid) Physical Phantom Design Specif
12、ication . 3 4.2 Reference Activity 3 5.0 Computational Phantom 5 6.0 Good Practices and Uncertainty Assessment . 5 6.1 Physical Phantom . 5 6.2 Computational Phantom . 6 7.0 References . 7 7.1 Normative References 7 7.2 Informative References 7 Appendix Appendix A Thyroid Anatomy and Physiology 9 Ta
13、bles Table 1 Mass attenuation coefficients for thyroid tissue . 4 Table 2 Effective half-times . 10 Figures Figure 1 The IAEA/ANSI neck (thyroid) physical phantom 4 Figure 2 The thyroid gland 10 iv Foreword (This foreword is not part of American National Standard ANSI/HPS N13.44-2014) During 1990, t
14、he National Institute of Standards and Technology (NIST) and the Bureau of Radiation and Medical Devices (BRMD) convened a three-day workshop of in vivo measurement professionals with the goal of obtaining consensus opinion regarding the development of standard phantoms for radioactivity measurement
15、s (Kramer and Inn 1991). A standard thyroid phantom was determined to be in need of attention by the American National Standards Institute (ANSI) standards writing groups as to the “definition/re-evaluation and quality/traceability.” The current thyroid phantom standard was drafted in 1973 (ANSI N44
16、.3-1973) and was last reviewed in 1984, and a revision of the standard to cover a more modern approach was deemed warranted. For the present effort, the Working Group reviewed the basic anatomical and physiological data available for the thyroid organ. Next, commercially available thyroid phantoms w
17、ere reviewed for quality of manufacture, ease of use, and suitability of anatomical design. Modern calibration techniques were considered including the use of nonphysical computational phantom models. Lastly, proper counting methods, uncertainty analysis, and necessary elements of a quality measurem
18、ent program were addressed. AMERICAN NATIONAL STANDARD ANSI/HPS N13.44-2014 1 Thyroid Phantom Used in Occupational Monitoring 1.0 Purpose and Scope 1.1 Introduction The thyroid gland is an integral component of the human endocrine system. Consequently, the radiobiological effect associated with a ra
19、dionuclide deposited in the thyroid poses a potential health risk to the individual. An in vivo measurement or calculation quantifying such a radionuclide is therefore valuable in the assessment and possible mitigation of that health risk. The validity of an in vivo measurement is dependent upon an
20、accurate calibration of the measuring system. The calibration process typically utilizes an anthropometric phantom containing a known quantity and distribution of radioactive material. Physical characteristics of the phantom, such as mass and density, are important parameters in phantom construction
21、 and use. Likewise, the degree to which these characteristics accurately reflect those of the human body being measured is intrinsic to the value of the subsequent measurement. Therefore, adherence to standard specifications in the construction and use of a suitable thyroid phantom further ensures t
22、he consistency and quality of an in vivo measurement of radionuclides deposited in the thyroid. An additional consideration in developing a standard calibration phantom is the ability to compare results obtained by different measurement systems (e.g., at different facilities). It is understood that
23、an individuals anatomy will likely differ from a phantom regardless of how it is defined. However, there is great value in assuring that a worker with an intake of radioactive material will be reported as having approximately the same uptake to the thyroid regardless of which measurement system (or
24、facility) performs the count. This principle is demonstrated by laboratory accreditation programs. 1.2 Purpose This standard establishes the criteria for acceptable design, fabrication, or modeling of a phantom suitable for calibrating monitoring systems for in vivo measurement of photon-emitting ra
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 1人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIHPSN13442014THYROIDPHANTOMUSEDINOCCUPATIONALMONITORINGPDF

链接地址:http://www.mydoc123.com/p-434865.html