ANSI AIAA S-142-2016 Standard Handbook for Multipactor Breakdown Prevention in Spacecraft Components.pdf
《ANSI AIAA S-142-2016 Standard Handbook for Multipactor Breakdown Prevention in Spacecraft Components.pdf》由会员分享,可在线阅读,更多相关《ANSI AIAA S-142-2016 Standard Handbook for Multipactor Breakdown Prevention in Spacecraft Components.pdf(69页珍藏版)》请在麦多课文档分享上搜索。
1、 ANSI/AIAA S-142-2016 Standard/Handbook for Multipactor Breakdown Prevention in Spacecraft Components Sponsored by American Institute of Aeronautics and Astronautics Approved 20 September 2016 American National Standards Institute Approved 21 October 2016 Abstract This document is intended to provid
2、e a standardized process for mitigation of multipactor breakdown within spacecraft components. It is directed toward component designers, satellite system engineers, as well as the customer community to provide worst-case conditions, margin requirements, and verification of those requirements using
3、state-of-the-art methodologies. In addition, recommended methods are provided, with examples, to ensure proper requirement verification for all satellite RF components susceptible to RF breakdown. ANSI/AIAA S-142-2016 ii Published by American Institute of Aeronautics and Astronautics 12700 Sunrise V
4、alley Drive, Reston, VA 20191 Copyright 2016 American Institute of Aeronautics and Astronautics All rights reserved No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. Printed in the United Stat
5、es of America ANSI/AIAA S-142-2016 iii Contents FOREWORD IX INTRODUCTION X 1 SCOPE 1 1.1 Purpose 1 1.2 Document Applicability and Features 1 1.3 Document Tailoring 2 1.4 General Document Structure and Process Overview 2 2 MINIMUM MULTIPACTOR CRITERIA AND DEVICE CLASSIFICATION 4 2.1 Minimum Multipact
6、or Criteria 5 2.1.1 Multipactor Susceptible Frequency Selection 5 2.1.2 Multipactor Gap 6 2.1.3 Multipactor Frequency-Gap (fd) Product 6 2.1.4 Minimum Frequency*Gap (fdmin) Product Criteria 6 2.2 Device Type 7 2.2.1 Type 1 Component 7 2.2.2 Type 2 Component 7 2.2.3 Type 3 Component 7 2.3 Device Anal
7、ysis Level 8 2.3.1 Analysis Level 1 9 2.3.2 Analysis Level 2 9 2.3.3 Analysis Level 3 9 2.3.4 Analysis Level Considerations 10 2.3.5 Special Cases and Examples 10 2.4 Process Flow Chart for Multipactor Qualification/Acceptance and Verification 11 3 SYSTEM ANALYSIS REQUIREMENTS 11 3.1 Definition of F
8、ailure Modes 12 3.2 Worst-case Amplifier Power 12 3.2.1 Single Amplifier (Single Carrier, Modulated or Multicarrier) 12 3.2.2 Non-resonant Combining of Amplifiers (Example: Multiport Amplifier) 13 3.2.3 Resonant Combining of Amplifiers (Example: Output Multiplexers) 1 3.3 Component Loss 13 3.4 VSWR/
9、Reflected Power Enhancement 13 ANSI/AIAA S-142-2016 iv 3.5 Effective Component Power for Analysis and Test 14 3.6 Other Requirements and Considerations 14 3.6.1 Test VSWR Environment 14 3.6.2 Other Ground Test Considerations 14 3.7 Venting Requirements 14 4 MULTIPACTOR MARGIN REQUIREMENTS 15 4.1 Mar
10、gin Requirements 15 4.2 Factors Influencing Margin Requirements 15 4.3 Margin Verification Methods 16 4.3.1 Component Qualification 16 4.3.1.1 Lot Acceptance by Qualification 16 4.3.1.2 Qualification by Similarity 16 4.3.2 Component Proto-qualification Testing 17 4.3.3 Flight Component Acceptance Te
11、sting 17 4.4 Risk Management Process 17 5 VERIFICATION BY ANALYSIS 18 5.1 Geometric Evaluation 18 5.2 Frequency Selection 18 5.3 Implementing System Parameters into Analysis 18 5.4 Local Electric Field/Voltage Analysis 18 5.4.1 Analysis Level 1 18 5.4.2 Analysis Level 2 19 5.4.3 Analysis Level 3 19
12、5.4.4 Analysis Level Considerations 19 5.5 Analytical Margin Determination 19 5.5.1 Analysis Level 1 and 2 Components 19 5.5.2 Analysis Level 3 Components 20 5.6 Material/SEY Evaluation 21 5.7 Components Not Eligible for Qualification by Analysis 22 5.8 Analysis Process 22 6 VERIFICATION BY TEST 25
13、6.1 Documentation 25 6.2 Breakdown Detection Methods 25 ANSI/AIAA S-142-2016 v 6.3 Test Setup Verification 26 6.3.1 Setup Verification 26 6.3.2 Known Breakdown Device 26 6.4 Duty Cycle 26 6.5 Pulse Length 26 6.6 Electron Seeding 26 6.7 Vacuum 27 6.8 Thermal 27 6.9 Data Acquisition 28 6.10 Pass/Fail
14、Criteria 28 7 ANALYSIS METHODOLOGY 29 7.1 Analysis Level 1 and 2 29 7.2 Steps for Verification Analysis using Worst-case Power (Section 3) 29 7.2.1 Steps for Determining Expected Breakdown Power 30 7.2.2 Gap Selection for Field Integration 30 7.2.3 Limitations and Considerations 30 7.3 Analysis Leve
15、l 3 31 7.3.1 Recommended Steps for Analysis 31 7.3.2 Particle Simulation Guidelines 31 7.3.2.1 Considerations for Initial Electron Sourcing 31 7.3.2.2 Determining Power Levels for Analysis 31 7.3.2.3 SEY inputs 32 7.3.2.4 Multipactor Breakdown Criteria and Accuracy 32 7.4 Analysis for Risk Assessmen
16、t 32 7.4.1 Hybrid RF Circuit Model Approach 32 7.4.2 RF Hybrid Model Limitations 33 8 TEST METHODOLOGY 34 8.1 Test Equipment Considerations 34 8.2 Test Setup Validation 37 8.2.1 Multipactor-Free Verification 37 8.2.2 Ability To Detect Multipactor 37 8.3 Multipactor Diagnostic Methods 37 8.3.1 Local
17、Diagnostics 38 8.3.1.1 Current Probe 38 8.3.1.2 Photon Detector 38 8.3.2 Global Diagnostics 39 8.3.2.1 Phase Null 39 8.3.2.2 Near Carrier Noise 40 ANSI/AIAA S-142-2016 vi 8.3.2.3 Third Harmonic 41 8.3.2.4 Transmitted/Reflected Power 41 8.4 Multipactor Breakdown Observations 41 8.4.1 Chamber Pressure
18、 Increase 41 8.4.2 DUT Temperature Increase 42 8.4.3 Visual Indication 42 8.4.4 RF Performance Changes 42 8.5 Relative Diagnostic Sensitivity 42 8.6 RF Shut-down Protection System 43 8.7 Electron Seeding 43 8.8 RF Test Operation 43 8.9 Data Acquisition and Reporting 43 8.9.1 Data Recording 43 8.9.2
19、Sampling Rates 44 8.9.3 Minimum Data Items Required 44 8.9.4 Test Report Guidelines 44 9 REFERENCES 45 ANNEX A BACKGROUND A-1 A.1 Background A-1 ANNEX B COMPARISON OF DIFFERENT MULTIPACTOR RISK MITIGATION PROCESSES B-1 ANNEX C REFERENCE GEOMETRIES FOR ANALYSIS AND TEST SETUP VALIDATION C-1 ANSI/AIAA
20、 S-142-2016 vii Figures Figure 1.1 Simplified sc hematic of an RF system 2 Figure 1.2 Applicability and document implementation for a ty pical RF system. . 4 Figure 2.1 Illustration depict ing the “no multipactor region” below fdmin. Actual values of fdmin will depend on the first cross over energy
21、of the SEY, E1. 7 Figure 2.2 Flow chart for marg in determination and verification process. 11 Figure 3.1 Example of a singl e carrier RF system for which component N must be evaluated for multipactor breakdown. 12 Figure 5.1 Baseline multipacto r threshold curves for analysis. RF voltage shown is p
22、eak RF voltage. . 20 Figure 5.2 Worst-case sec ondary electron yield. . 22 Figure 5.3 Minimum analysis verification process. 24 Figure 8.1 Example of a multipactor test block diagram. . 35 Figure 8.2 Ring resonat or test block diagram. . 36 Figure 8.3 Example block diagram for a phase null diagnosti
23、c. . 40 Figure A.1 Cartoon r epresentation of simple, parallel plate multipactor breakdown. . A-1 Figure A.2 A general secondary electron yield (SEY) curve showing the theoretical multipactor region for electron density growth. A-2 Figure B.1 Comparison between AIAA and ECSS multipactor threshold. .
24、 B-3 Figure C.1 Annotated cross section of coaxial device. . . C-1 Figure C.2 Dimensional drawing of outer conductor piece. . C-2 Figure C.3 Dimensional drawing of inner conductor piece. . C-2 Figure C.4 Devi ce geometry. . C-3 Figure C.5 Calculated gap volt ages from electromagnetic analysis. . C-3
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIAIAAS1422016STANDARDHANDBOOKFORMULTIPACTORBREAKDOWNPREVENTIONINSPACECRAFTCOMPONENTSPDF

链接地址:http://www.mydoc123.com/p-430651.html