ARINC 654-1994 Environmental Design Guidelines for Integrated Modular Avionics Packaging and Interfaces《综合模块航空电子包装和接口环境设计指南》.pdf
《ARINC 654-1994 Environmental Design Guidelines for Integrated Modular Avionics Packaging and Interfaces《综合模块航空电子包装和接口环境设计指南》.pdf》由会员分享,可在线阅读,更多相关《ARINC 654-1994 Environmental Design Guidelines for Integrated Modular Avionics Packaging and Interfaces《综合模块航空电子包装和接口环境设计指南》.pdf(51页珍藏版)》请在麦多课文档分享上搜索。
1、ENVIRONMENTAL DESIGN GUIDELINESFOR INTEGRATED MODULAR AVIONICSPACKAGING AND INTERFACESARINC REPORT 654PUBLISHED: DECEMBER 9, 1994AN DOCUMENTPrepared byAIRLINES ELECTRONIC ENGINEERING COMMITTEEPublished byAERONAUTICAL RADIO, INC.2551 RIVA ROAD, ANNAPOLIS, MARYLAND 21401Copyright 1994 byAERONAUTICAL R
2、ADIO, INC.2551 Riva RoadAnnapolis, Maryland 21401-7465 USAARINC REPORT 654ENVIRONMENTAL DESIGN GUIDELINES FORINTEGRATED MODULAR AVIONICS PACKAGING AND INTERFACESPublished: December 9, 1994Prepared by the Airlines Electronic Engineering CommitteeReport 654 Adopted by the Airlines Electronic Engineeri
3、ng Committee: October 21, 1994Report 654 Adopted by the Industry: December 9, 1994FOREWORDActivities of AERONAUTICAL RADIO, INC. (ARINC)and thePurpose of ARINC Reports and SpecificationsAeronautical Radio, Inc. is a corporation in which the United States scheduled airlinesare the principal stockhold
4、ers. Other stockholders include a variety of other air transportcompanies, aircraft manufacturers and foreign flag airlines.Activities of ARINC include the operation of an extensive system of domestic andoverseas aeronautical land radio stations, the fulfillment of systems requirements to accomplish
5、ground and airborne compatibility, the allocation and assignment of frequencies to meet thoseneeds, the coordination incident to standard airborne communications and electronics systems andthe exchange of technical information. ARINC sponsors the Airlines Electronic EngineeringCommittee (AEEC), comp
6、osed of airline technical personnel. The AEEC formulates standardsfor electronic equipment and systems for airlines. The establishment of EquipmentCharacteristics is a principal function of this Committee.It is desirable to reference certain general ARINC Specifications or Reports which areapplicabl
7、e to more than one type of equipment. These general Specifications or Reports may beconsidered as supplementary to the Equipment Characteristics in which they are referenced. Theyare intended to set forth the desires of the airlines pertaining to components or equipment isconcerned.An ARINC Report (
8、Specification or Characteristic) has a twofold purpose which is:(1) To indicate to the prospective manufacturers of airline electronic equipment theconsidered opinion of the airline technical people coordinated on an industry basisconcerning requisites of new equipment, and(2) To channel new equipme
9、nt designed in a direction which can result in the maximumpossible standardization of those physical and electrical characteristics which influenceinterchangeability of equipment without seriously hampering engineering initiative.iiARINC REPORT 654TABLE OF CONTENTSITEM SUBJECT PAGE1.0 INTRODUCTION 1
10、1.1 Objectives 11.2 Scope 11.3 References 12.0 VIBRATION AND SHOCK 62.1 Introduction 62.2 Vibration and Shock Isolation 63.0 THERMAL CONSIDERATIONS 73.1 Thermal Management 73.1.1 Electronic System Thermal Design Objectives 73.1.2 Design Condition Definitions 73.1.3 Air Flow 73.1.4 Fully Enclosed and
11、 Flow-Through Cooling 73.1.5 Thermal Design Conditions 73.1.6 Cooling Hole Sizes - Limit Cases 83.2 Electronic Parts Application 83.3 Ambient Temperatures 83.4 Equipment Sidewall Temperature 93.5 LRM Thermal Appraisal 93.6 Thermal Interface Information 93.7 Materials for Thermal Design 94.0 DESIGN L
12、IFE 144.1 Operational Design Life 144.2 Failure Modes 144.3 Service Life-Cycles/Duration 145.0 INTRINSIC SAFETY/EXPLOSION PROOFNESS 155.1 Introduction 155.2 Explosive Atmosphere - Propagation of Flame 155.2.1 Sealed Enclosure 155.2.2 Unsealed Enclosure 156.0 ELECTROMAGNETIC ENVIRONMENTAL CONSIDERATI
13、ONS 166.1 Introduction 166.2 LRM Considerations 166.3 Cabinet Considerations 166.4 Wire Integration Assembly 176.5 Lightning - Indirect Effects 176.5.1 Design Guidelines 177.0 SHIELDED ENCLOSURES 187.1 Non-Metallic Composite Enclosures 187.2 Metallic Enclosures 187.2.1 Construction 187.2.2 Corrosion
14、 Protection 187.2.2.1 Dissimilar Metals 187.2.2.2 Carbon Fiber-Metal Interface 187.2.2.2.1 Wet Assembly 197.2.2.2.2 Dry Assembly 197.2.2.2.3 Fasteners 197.3 Penetrations 197.3.1 Minimizing Harmful Effects 207.3.2 Waveguide Techniques 207.3.3 Structural Gaps - How They Can Form Slot Antennas 20iiiARI
15、NC REPORT 654TABLE OF CONTENTSITEM SUBJECT PAGE7.4 Surface Treatments 207.4.1 Chromate Conversion Finishes 207.4.2 Steel Surface Treatments 237.5 Metal-to-Metal Contact Interference 247.5.1 Techniques to Minimize Intermodulation Product (IP) Signal Effects 247.6 Measuring Shielding Effectiveness 247
16、.6.1 Characterizing Shielding Effectiveness 247.6.2 Shielding Effectiveness Test Set-Up 247.6.3 Test Methodology 258.0 ENVIRONMENTAL SEALING GASKETS 268.1 Overview of Gasket Forms, Styles and Materials and Required Attributes 268.1.1 Looseleaf Gaskets 268.1.2 Combination Gaskets 268.1.3 Elastomeric
17、Core Gaskets 268.2 Gasket Selection 268.2.1 Major Cost Drivers 268.2.2 Environmental Parameters 268.3 Recommendations 269.0 ELECTRICAL BONDING AND GROUNDING 299.1 Purpose 299.2 Considerations 299.3 Electrical Bonding based on indirectcooling via flat vertical surfaces 8 mm apart. This8 mm separation
18、 is optimum for ambient airtemperatures less than 40oC, with the optimumspacing increasing prohibitively for higher airtemperatures. The dissipation wattage estimate isa lower limit assuming no beneficial inducedturbulence from external agencies.3.1.6 Cooling Hole Sizes - Limit CasesDetermination of
19、 the size of cooling holes to allow flowof cooling air through the LRM is a compromise betweenthe following factors:a. Drip formation and icing - To prevent water dropletshanging in the cooling holes, the hole size should beat least 0.120 inches (3 mm) in diameter. For holesizes less than this, wate
20、r droplets may not clear andfor low temperatures ice formation will block thecooling holes. Under these conditions semiconductordevice junction temperatures have been know to riseto damaging levels before the ice melts and allows thefree passage of cooling air.b. Foreign Object Damage (FOD) - Hole s
21、izes should besmaller than 0.157 inches (4 mm) to prevent entry ofthe smallest fasteners, nuts, screws, washers or rivetsin general aircraft use, i.e., those with a head diameterof 0.2 inches (5 mm).COMMENTARYUse of #0 or smaller hardware is discouraged ascooling hole size cannot be reduced to a poi
22、nt whereentry of small hardware can be prevented (see above).If small screws (such as 2 mm) are used,consideration should be given to reducing the coolinghole size to 0.125 inches to prevent entry of thathardware. While manufacturing costs will be greaterdue to the increased quantity of holes requir
23、ed, allpossible steps should be taken to prevent entry ofstray hardware into the LRM.c. Electro Magnetic Shielding - Standard Honeycombconstruction ventilation panels are generally availablewith a cell size of 0.125 inches (3.2 mm). A one inchsquare of this type of panel provides an insertion lossof
24、 60 dB at 400 MHz.The ventilation and screening construction examplesillustrated in Figures 3-1, 3-2 and 3-3 incorporating an0.125 inch honeycomb cell will allow the droplets to clear,will block passage of the smallest generally used pieceparts, and will provide 60 dB of insertion loss at 400MHz.Alt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ARINC6541994ENVIRONMENTALDESIGNGUIDELINESFORINTEGRATEDMODULARAVIONICSPACKAGINGANDINTERFACES 综合 模块 航空

链接地址:http://www.mydoc123.com/p-429523.html