AGMA 11FTM05-2011 Epicyclic Load Sharing Map C Application as a Design Tool.pdf
《AGMA 11FTM05-2011 Epicyclic Load Sharing Map C Application as a Design Tool.pdf》由会员分享,可在线阅读,更多相关《AGMA 11FTM05-2011 Epicyclic Load Sharing Map C Application as a Design Tool.pdf(25页珍藏版)》请在麦多课文档分享上搜索。
1、11FTM05AGMA Technical PaperEpicyclic Load SharingMap Application as aDesign ToolBy A. Singh, General MotorsCompanyEpicyclic Load Sharing Map Application as a Design ToolDr. Avinash Singh, General Motors CompanyThe statements and opinions contained herein are those of the author and should not be con
2、strued as anofficial action or opinion of the American Gear Manufacturers Association.AbstractOneofthemainadvantagesofplanetarytransmissionsisthattheinputtorqueissplitintoanumberofparallelpaths. Therefore, in an n planet planetary system, each sun-pinion-ring path is designed to carry 1/n of theinpu
3、t torque. However, equal load sharing between the planets is possible only in the ideal case. In thepresence of positional type manufacturing errors, equal load sharing is not realized, and the degree ofinequality in load sharing has major implications for gear system sizing, tolerancing schemes, an
4、d torqueratings.Inthispaper,theconceptofanEpicyclicLoadSharingMap(ELSM)willbeexplained. TheELSMisaphysicsbasedtoolthatisderivedfromaphysicalexplanationoftheloadsharingphenomenon. ItisaplotoftheLoadratio (or % of input torque) versus a non dimensional parameter Xe. The non-dimensional parameter is af
5、unction of combined system stiffness, tolerance level, and operating torque. The ELSM maps out theoperatingspaceofanyepicyclicgearset,andagivengearsetatagivenoperatingconditionmapstoapointontheELSM. OnceagearsetislocatedontheELSM,itsbehaviorunderanyloadanderrorconditioncanbequickly predicted. Also,
6、the advantages of adding extra planets can be accurately estimated.Inthispaper,theapplicationoftheELSMasadesigntoolwillbediscussed. Thegeneralcasewhenthereareerrorsonthepositionofeverycarrierpin-holewillbeconsidered. Statisticalsimulationswillbeperformedforagiven manufacturing error distribution for
7、 3 to 7 planet systems.Copyright 2011American Gear Manufacturers Association1001 N. Fairfax Street, 5thFloorAlexandria, Virginia 22314October 2011ISBN: 978-1-61481-004-93 11FTM05Epicyclic Load Sharing Map Application as a Design ToolDr. Avinash Singh, General Motors CompanyIntroductionEpicyclictrans
8、missionsarecompactastheinputtorqueissplitintoanumberofparallelsun-pinion-ringpaths,and each path is designed to transmit a fraction of the input torque. In the absence of manufacturingvariations, perfect load sharing between the different parallel paths is possible. The power density of suchepicycli
9、c gearsets can be improved by simply adding additional planets (up to the maximumnumber thatcanfit).However, in reality due to the presence of various manufacturing variations that cause positional differencesin the location of the individual planets, such equal load sharing cannot be achieved 1-14.
10、 Some of theplanets will transmit higher than nominal loads, while others transmit lower than nominal loads. Previousexperimental 1-6 and computational 6-13 studies of varying complexities have demonstrated the signific-antloadsharinginequalitiesthatresult fromthese errors. Thisload sharinginequalit
11、y needsto beaccuratelyestimated in order to properly size epicyclic gearsets and reliably estimate their torque capacity 14.Recent research work has shown that the load sharing behavior is associated withpositional deviationsfromideal location that causes one or more planets to lead or lag the other
12、 planets. These deviations from ideallocationareduetomanufacturingvariations,andwillbereferredtoas“positionalerror”orsimply“error”inthispaper. BodasandKahraman11classifythemanufacturingerrorsintotimeinvariant,assemblyindependenterrors(pinholepositionerror,pinholediametererror),timeinvariant,assembly
13、dependenterrors(planettooththickness, planet pin and bore eccentricities), and time variant, assembly dependent errors (run-outs of thegears). Theyalsoofferawaytocombinealltheseerrorsintoacumulativepositionalerror. Inthiswork,“error”will refer to this cumulative positional error that includes the co
14、ntributions from all sources.There are several key factors that influence the load sharing behavior. Some of these factors are thetransmittedtorque,errorlevel,directionalityoferror,systemflexibility,number of planets, andamount offloatin the system. The sensitivity of load sharing inequality to many
15、 of these variables has been studied 1-5,10-14. These factors are also recognized in ANSI/AGMA 6123-B06 15.While the research activities have revealed much about the factors influencing load sharing, and providedcomputationalmeansofquantifyingthe loadinequalities, abasic physicalunderstanding ofthe
16、truemechan-ism that leads to the load sharing behavior was lacking. In recent papers 16-18, the author has proposed aphysical mechanism that explains all known load sharing behavior. Both floating and non-floating (fixedcenters) systems were treated. The physical explanation leads to simple expressi
17、ons that seem to com-pletelydescribethecomplexloadsharingbehavior. Theseexpressionsareinnon-dimensionaltermsandcanbeappliedtoanyepicyclicgearsetunderanyoperatingcondition. Comparisonstocomputationalmodelsandexperimental results have shown excellent correlation.The proposed physical explanation also
18、leads to the concept of an epicyclic load sharing map (ELSM). TheELSM is a plot of the Load ratio (or % of input torque) versus a non dimensional parameter Xe.Thenon-dimensionalparameterisafunctionofcombinedsystemstiffness,tolerance level,and operatingtorque.The ELSM maps out the operating space of
19、any epicyclic gear set, and a given gear set at a given operatingcondition maps to a point on the ELSM. The ELSM contains curves for 3, 4, 5, 6, and 7 (and more) planetsystems. Once a gear set is located on the ELSM, its behavior under any load and error condition can bequickly predicted. Also, the
20、advantages of adding extra planets can be accurately estimated.The load ratio term used in the ELSM is defined similar to the mesh load factor, K, defined in the AGMAstandards 15. AGMA recommends estimating Kby measurement, or using a table provided in 15. The4 11FTM05ELSM provides an alternate meth
21、od of defining the load sharing inequality which is based on anunderstanding of the physical behavior, and implicitly includes the influence of the key variables like error,stiffness, number of planets, transmitted torque, etc.Inthispaper, wewill firstbriefly reviewthe physicalexplanation ofthe load
22、sharing phenomenonfor fixedandfloatingsystems. Wewillalsosummarizethepreviouslypublishedfindingsonthedetailedmechanismofloadsharingin37planet systems. A detailed derivation of a five planet system will be provided for the sake ofcompleteness. Next, the concept of the Epicyclic Load Sharing Map will
23、be discussed. An equivalent errormetric that captures the cumulative effect of errors on the position of each planet in the system will also bediscussed. A comparison between the values predicted by the ELSM and those found in 15 will also bediscussed.Finallyastatisticalsimulationwillbeperformedtode
24、monstratetheapplicationoftheELSMtoactualgearsetswith varying levels of manufacturing accuracy.Key elements of the proposed frameworkThe following are the key elements of the framework that will be used to describe the planetary load sharingbehavior:S Tangential position error is the root causeS Syst
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA11FTM052011EPICYCLICLOADSHARINGMAPCAPPLICATIONASADESIGNTOOLPDF

链接地址:http://www.mydoc123.com/p-422123.html