A Constrained Regression Technique for COCOMO Calibration.ppt
《A Constrained Regression Technique for COCOMO Calibration.ppt》由会员分享,可在线阅读,更多相关《A Constrained Regression Technique for COCOMO Calibration.ppt(28页珍藏版)》请在麦多课文档分享上搜索。
1、A Constrained Regression Technique for COCOMO Calibration,Presented by Vu Nguyen On behalf of Vu Nguyen, Bert Steece, Barry Boehm nguyenvu, berts, boehmusc.edu,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear Regression Validation and Comparison COCOMO o
2、verview Cross validation Conclusions Limitations Future Work,Introduction,Building software estimation models is a search problem to find the best possible parameters that generate high prediction accuracy satisfy predefined constraints,Multiple Linear Regression,Multiple linear regression is presen
3、ted asyi = 0 + 1xi1 + kxik + i , i = 1,2, n Where, 0, 1, k are the coefficients n is the number of observations k is the number of variables xij is the value of the variable jth for the ith observation yi is the response of the ith observation,Ordinary Least Squares,OLS is the most common method to
4、estimate coefficients 0, 1, k OLS estimates coefficients by minimizing the sum of squared errors (SSE) Minimizeis the estimate of ith observation,Some Limitations of OLS,Highly sensitive to outliers Low bias but high variance (e.g., caused by collinearity or overfitting) Unable to constrain the esti
5、mates of coefficients Estimated coefficients may be counter-intuitive Example, OLS coefficient estimate for RUSE is negative, e.g., increase RUSE rating results in a decrease in effort,Develop for Reuse (RUSE),OLS estimates,Some Other Approaches,Stepwise (forward selection) Start with no variable an
6、d gradually add variables until “optimal” solution is achieved Ridge Minimize SSE and impose a penalty on sum of squared coefficientsLasso Minimize SSE and impose a penalty on sum of absolute coefficients,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear
7、Regression Validation COCOMO overview Cross validation Conclusions Limitations Future Work,Constrained Regression,Principles Use optimization paradigm: optimizing objective function with constraintMinimize f(y, X) subject to cf(z) Impose constraints on coefficients and relative error Expect to reduc
8、e variance by reducing the number of variables (variance and bias tradeoff),Constrained Regression (cont),General formMinimize subject to Constrained Minimum Sum of Squared Errors (CMSE)Constrained Minimum Sum of Absolute Errors (CMAE)Constrained Minimum Sum of Relative Errors (CMRE),Solve the Equat
9、ions,Solving the equations is an optimization problem CMSE: quadratic programming CMRE and CMAE: transformed to the form of linear programming We used lpsolve and quadprog packages in R Determine parameter c using cross-validation,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso,
10、 Ridge Constrained Linear Regression Validation and comparison COCOMO overview Cross validation Conclusions Limitations Future Work,Validation and Comparison,Two COCOMO datasets COCOMO 2000: 161 projects COCOMO 81: 63 projects Comparing with popular model building approaches OLS Stepwise Lasso Ridge
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ACONSTRAINEDREGRESSIONTECHNIQUEFORCOCOMOCALIBRATIONPPT

链接地址:http://www.mydoc123.com/p-377817.html