欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    A Constrained Regression Technique for COCOMO Calibration.ppt

    • 资源ID:377817       资源大小:637.50KB        全文页数:28页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    A Constrained Regression Technique for COCOMO Calibration.ppt

    1、A Constrained Regression Technique for COCOMO Calibration,Presented by Vu Nguyen On behalf of Vu Nguyen, Bert Steece, Barry Boehm nguyenvu, berts, boehmusc.edu,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear Regression Validation and Comparison COCOMO o

    2、verview Cross validation Conclusions Limitations Future Work,Introduction,Building software estimation models is a search problem to find the best possible parameters that generate high prediction accuracy satisfy predefined constraints,Multiple Linear Regression,Multiple linear regression is presen

    3、ted asyi = 0 + 1xi1 + kxik + i , i = 1,2, n Where, 0, 1, k are the coefficients n is the number of observations k is the number of variables xij is the value of the variable jth for the ith observation yi is the response of the ith observation,Ordinary Least Squares,OLS is the most common method to

    4、estimate coefficients 0, 1, k OLS estimates coefficients by minimizing the sum of squared errors (SSE) Minimizeis the estimate of ith observation,Some Limitations of OLS,Highly sensitive to outliers Low bias but high variance (e.g., caused by collinearity or overfitting) Unable to constrain the esti

    5、mates of coefficients Estimated coefficients may be counter-intuitive Example, OLS coefficient estimate for RUSE is negative, e.g., increase RUSE rating results in a decrease in effort,Develop for Reuse (RUSE),OLS estimates,Some Other Approaches,Stepwise (forward selection) Start with no variable an

    6、d gradually add variables until “optimal” solution is achieved Ridge Minimize SSE and impose a penalty on sum of squared coefficientsLasso Minimize SSE and impose a penalty on sum of absolute coefficients,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear

    7、Regression Validation COCOMO overview Cross validation Conclusions Limitations Future Work,Constrained Regression,Principles Use optimization paradigm: optimizing objective function with constraintMinimize f(y, X) subject to cf(z) Impose constraints on coefficients and relative error Expect to reduc

    8、e variance by reducing the number of variables (variance and bias tradeoff),Constrained Regression (cont),General formMinimize subject to Constrained Minimum Sum of Squared Errors (CMSE)Constrained Minimum Sum of Absolute Errors (CMAE)Constrained Minimum Sum of Relative Errors (CMRE),Solve the Equat

    9、ions,Solving the equations is an optimization problem CMSE: quadratic programming CMRE and CMAE: transformed to the form of linear programming We used lpsolve and quadprog packages in R Determine parameter c using cross-validation,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso,

    10、 Ridge Constrained Linear Regression Validation and comparison COCOMO overview Cross validation Conclusions Limitations Future Work,Validation and Comparison,Two COCOMO datasets COCOMO 2000: 161 projects COCOMO 81: 63 projects Comparing with popular model building approaches OLS Stepwise Lasso Ridge

    11、 Cross-validation 10-fold cross validation,COCOMO,Cost Constructive Model (COCOMO) first published in 1981 Calibrated using 63 projects (COCOMO 81 dataset) Uses SLOC as a size measure and 15 cost drivers COCOMO II published in 2000 Reflects changes in technologies and practices Uses 22 cost drivers

    12、plus size measure Introduces 5 scale factors Calibrated using 161 data points (COCOMO II dataset),COCOMO Overview (cont),COCOMO Effort Equation, non-linearLinearize the model using log-transformation COCOMO 81log(PM) = 0 + 1 log(Size) + 2 log(EM1) + + 16 log(EM15) COCOMO IIlog(PM) = 0 + 1 log(Size)

    13、+ i SFi log(Size) + j log(EMj) Estimate coefficients using a linear regression method,Model Accuracy Measures,Magnitude of relative errors (MRE)Mean of MRE (MMRE)Prediction Level: PRED(l) = k/N Where, k is the number of estimates with MRE l,Cross Validation,10-fold cross validation was used Step 1.

    14、Randomly split the dataset into K=10 subsets Step 2. For each i = 1 . 10 Remove the subset i th and build the model i th subset is used as testing set to calculate MMREi and PRED(l)I Step 3. Repeat 1 and 2 for r=15 times,Non-cross validation results,COCOMO II dataset (N = 161),COCOMO 81 dataset (N =

    15、 63),OLS: Max MRE=1.23 PRED=0.78,* PRED(0.3),Cross-validation Results,COCOMO II dataset,COCOMO 81 dataset,Statistical Significance,Results of statistical significance tests on MMRE (0.05 confidence level used) Mann-Whitney U hypothesis test,CMSE outperforms Ridge, OLS p 0.10 p 0.10,CMSE outperforms

    16、Lasso, Stepwise p 0. 05,CMAE outperforms Lasso, Ridge, OLS p 10-3 p 0. 02 Stepwise,CMRE outperforms Lasso, Ridge, OLS p 10-4 p 10-4 Stepwise,Comparing With Published Results,Some best published results in for COCOMO datasets Bayesian analysis (Boehm et al., 2000) Chen et al., 2006 Best cross-validat

    17、ed mean PRED(.30):,Productivity Range,COCOMO II.2000 A = 2.94 B = 0.91,CMRE A = 2.27 B = 0.98,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear Regression Validation and comparison COCOMO overview Cross validation Conclusions Limitations Future Work,Concl

    18、usions,Technique imposes constraints on the estimates of coefficients and the magnitude of errors term Directly resolving the unexpected estimates of coefficients determined by data Estimation accuracies are favorable CMRE and CMAE outperform OLS, Stepwise, Ridge, Lasso, and CMSE MRE and MAE are fav

    19、orable objective functions Technique can be applied in not only COCOMO-like models but also other linear models An alternative for researchers and practitioners to build models,Limitations,As the technique deals with the optimization, sub-optimal solution is returned instead of global-optimal one Mu

    20、ltiple solutions exist for the estimates of coefficients There are only two datasets investigated, the technique might not work well on other datasets,Future Work,Validate the technique using other datasets (e.g., NASA datasets) Compare results from the technique with others such as neutral networks

    21、, generic programming Apply and compare with other objective functions MdMRE (median of MRE) Z measure (z=estimate/actual),References,Boehm et al., 2000. B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts, Software Cost Estimation with COCOMO II. Prentice Hall, 2000. Chen et al., 2000, Z. Chen, T. Menzies, D. Port, and B. Boehm. Finding the right data for software cost modeling. IEEE Software, Nov 2005.,Thank You,Q&A,


    注意事项

    本文(A Constrained Regression Technique for COCOMO Calibration.ppt)为本站会员(吴艺期)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开