Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt
《Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt》由会员分享,可在线阅读,更多相关《Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt(27页珍藏版)》请在麦多课文档分享上搜索。
1、1,Introduction to Transfer Learning (Part 2) For 2012 Dragon Star Lectures,Qiang YangHong Kong University of Science and Technology Hong Kong, China http:/www.cse.ust.hk/qyang,Domain Adaptation in NLP,Applications,Automatic Content Extraction Sentiment Classification Part-Of-Speech Tagging NER Quest
2、ion Answering Classification Clustering,Selected Methods,Domain adaptation for statistical classifiers Hal Daume III & Daniel Marcu, JAIR 2006, Jiang and Zhai, ACL 2007 Structural Correspondence Learning John Blitzer et al. ACL 2007 Ando and Zhang, JMLR 2005 Latent subspace Sinno Jialin Pan et al. A
3、AAI 08,2,Instance-transfer Approaches Wu and Dietterich ICML-04 J.Jiang and C. Zhai, ACL 2007 Dai, Yang et al. ICML-07,Differentiate the cost for misclassification of the target and source data,3,Uniform weights,Correct the decision boundary by re-weighting,Loss function on the target domain data,Lo
4、ss function on the source domain data,Regularization term,Cross-domain POS tagging,entity type classification Personalized spam filtering,TrAdaBoost Dai, Yang et al. ICML-07,4,Misclassified examples: increase the weights of the misclassified target data decrease the weights of the misclassified sour
5、ce data,Evaluation with 20NG: 22%8% http:/people.csail.mit.edu/jrennie/20Newsgroups/,Locally Weighted Ensemble Jing Gao, Wei Fan, Jing Jiang, Jiawei Han: Knowledge transfer via multiple model local structure mapping. KDD 2008,Graph-based weights approximationWeight of a model is proportional to the
6、similarity between its neighborhood graph and the clustering structure around x.,Transductive Transfer Learning Instance-transfer Approaches Sample Selection Bias / Covariance Shift Zadrozny ICML-04, Schwaighofer JSPI-00,Input: A lot of labeled data in the source domain and no labeled data in the ta
7、rget domain.Output: Models for use in the target domain data.Assumption: The source domain and target domain are the same. In addition, and are the same while and may be different caused by different sampling process (training data and test data).Main Idea: Re-weighting (important sampling) the sour
8、ce domain data.,Sample Selection Bias/Covariance Shift,To correct sample selection bias:How to estimate ? One straightforward solution is to estimate and , respectively. However, estimating density function is a hard problem.,weights for source domain data,Sample Selection Bias/Covariance Shift Kern
9、el Mean Match (KMM) Huang et al. NIPS 2006,Main Idea: KMM tries to estimate directly instead of estimating density function. It can be proved that can be estimated by solving the following quadratic programming (QP) optimization problem.Theoretical Support: Maximum Mean Discrepancy (MMD) Borgwardt e
10、t al. BIOINFOMATICS-06. The distance of distributions can be measured by Euclid distance of their mean vectors in a RKHS.,To match means between training and test data in a RKHS,9,Feature Space: Document-word co-occurrence,D_S,D_T,Knowledge transfer,Source,Target,10,10,Co-Clustering based Classifica
11、tion (KDD 2007),Co-clustering is applied between features (words) and target-domain documents Word clustering is constrained by the labels of in-domain (Old) documents The word clustering part in both domains serve as a bridge,Structural Correspondence Learning Blitzer et al. ACL 2007,SCL: Ando and
12、Zhang, JMLR 2005 Define pivot features: common in two domains Build Latent Space built from Pivot Features, and do mapping Build classifiers through the non-pivot Features,11,SCL Blitzer et al. EMNLP-06, Blitzer et al. ACL-07, Ando and Zhang JMLR-05,a) Heuristically choose m pivot features, which is
13、 task specific. b) Transform each vector of pivot feature to a vector of binary values and then create corresponding prediction problem.,Learn parameters of each prediction problem,Do Eigen Decomposition on the matrix of parameters and learn the linear mapping function.,Use the learnt mapping functi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- INTRODUCTIONTOTRANSFERLEARNINGPART2FOR2012DRAGONPPT

链接地址:http://www.mydoc123.com/p-376737.html