欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt

    • 资源ID:376737       资源大小:1.41MB        全文页数:27页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt

    1、1,Introduction to Transfer Learning (Part 2) For 2012 Dragon Star Lectures,Qiang YangHong Kong University of Science and Technology Hong Kong, China http:/www.cse.ust.hk/qyang,Domain Adaptation in NLP,Applications,Automatic Content Extraction Sentiment Classification Part-Of-Speech Tagging NER Quest

    2、ion Answering Classification Clustering,Selected Methods,Domain adaptation for statistical classifiers Hal Daume III & Daniel Marcu, JAIR 2006, Jiang and Zhai, ACL 2007 Structural Correspondence Learning John Blitzer et al. ACL 2007 Ando and Zhang, JMLR 2005 Latent subspace Sinno Jialin Pan et al. A

    3、AAI 08,2,Instance-transfer Approaches Wu and Dietterich ICML-04 J.Jiang and C. Zhai, ACL 2007 Dai, Yang et al. ICML-07,Differentiate the cost for misclassification of the target and source data,3,Uniform weights,Correct the decision boundary by re-weighting,Loss function on the target domain data,Lo

    4、ss function on the source domain data,Regularization term,Cross-domain POS tagging,entity type classification Personalized spam filtering,TrAdaBoost Dai, Yang et al. ICML-07,4,Misclassified examples: increase the weights of the misclassified target data decrease the weights of the misclassified sour

    5、ce data,Evaluation with 20NG: 22%8% http:/people.csail.mit.edu/jrennie/20Newsgroups/,Locally Weighted Ensemble Jing Gao, Wei Fan, Jing Jiang, Jiawei Han: Knowledge transfer via multiple model local structure mapping. KDD 2008,Graph-based weights approximationWeight of a model is proportional to the

    6、similarity between its neighborhood graph and the clustering structure around x.,Transductive Transfer Learning Instance-transfer Approaches Sample Selection Bias / Covariance Shift Zadrozny ICML-04, Schwaighofer JSPI-00,Input: A lot of labeled data in the source domain and no labeled data in the ta

    7、rget domain.Output: Models for use in the target domain data.Assumption: The source domain and target domain are the same. In addition, and are the same while and may be different caused by different sampling process (training data and test data).Main Idea: Re-weighting (important sampling) the sour

    8、ce domain data.,Sample Selection Bias/Covariance Shift,To correct sample selection bias:How to estimate ? One straightforward solution is to estimate and , respectively. However, estimating density function is a hard problem.,weights for source domain data,Sample Selection Bias/Covariance Shift Kern

    9、el Mean Match (KMM) Huang et al. NIPS 2006,Main Idea: KMM tries to estimate directly instead of estimating density function. It can be proved that can be estimated by solving the following quadratic programming (QP) optimization problem.Theoretical Support: Maximum Mean Discrepancy (MMD) Borgwardt e

    10、t al. BIOINFOMATICS-06. The distance of distributions can be measured by Euclid distance of their mean vectors in a RKHS.,To match means between training and test data in a RKHS,9,Feature Space: Document-word co-occurrence,D_S,D_T,Knowledge transfer,Source,Target,10,10,Co-Clustering based Classifica

    11、tion (KDD 2007),Co-clustering is applied between features (words) and target-domain documents Word clustering is constrained by the labels of in-domain (Old) documents The word clustering part in both domains serve as a bridge,Structural Correspondence Learning Blitzer et al. ACL 2007,SCL: Ando and

    12、Zhang, JMLR 2005 Define pivot features: common in two domains Build Latent Space built from Pivot Features, and do mapping Build classifiers through the non-pivot Features,11,SCL Blitzer et al. EMNLP-06, Blitzer et al. ACL-07, Ando and Zhang JMLR-05,a) Heuristically choose m pivot features, which is

    13、 task specific. b) Transform each vector of pivot feature to a vector of binary values and then create corresponding prediction problem.,Learn parameters of each prediction problem,Do Eigen Decomposition on the matrix of parameters and learn the linear mapping function.,Use the learnt mapping functi

    14、on to construct new features and train classifiers onto the new representations.,Courtesy of Sinno Pan,Self-Taught Learning Feature-representation-transfer Approaches Unsupervised Feature Construction Raina et al. ICML-07,Three steps: Applying sparse coding Lee et al. NIPS-07 algorithm to learn high

    15、er-level representation from unlabeled data in the source domain.Transforming the target data to new representations by new bases learnt in the first step. Traditional discriminative models can be applied on new representations of the target data with corresponding labels.,Courtesy of Sinno Pan,Step

    16、1:Input: Source domain data and coefficient Output: New representations of the source domain data and new bases Step2:Input: Target domain data , coefficient and bases Output: New representations of the target domain data,Unsupervised Feature Construction Raina et al. ICML-07,Courtesy of Sinno Pan,“

    17、Self-taught Learning” Raina et al. Self-Taught Learning ICML-07,Self-taught Learning: Courtesy of Raina,15,16,Examples of Higher Level Features Learned,Natural images.,Learnt bases: “Edges”,Handwritten characters.,Learnt bases: “Strokes”,Self-taught Learning: Courtesy of Raina,17,Latent Feature Spac

    18、e TL Methods: Temporal Domain Distribution Changes,The mapping function f learned in the offline phase can be out of date. Recollecting the WiFi data is very expensive. How to adapt the model ?,Time,Night time period,Day time period,18,Transfer Component Analysis: Sinno Pan et al., IEEE Trans. NN 20

    19、11,Source Domain data,Target Domain data,Observations,Latent factors,If two domains are related, ,Common latent factors across domains,Sinno Jialin Pan,19,Motivation (cont.),Source domain data,Target domain data,Observations,Latent factors,Some latent factors may preserve important properties (such

    20、as variance, local topological structure) of the original data, while others may not.,Sinno Jialin Pan,PCA: Only Maximizing the Data Variance,20,Principal Component Analysis (PCA) Jolliffe. 02 aims to find a low-dimensional latent space where the variance of the projected data is maximized. Con: it

    21、may not reduce the difference between domains.,Sinno Jialin Pan,21,Learning the Transform Mapping,How to estimate distance between distributions in the latent space?,How to solve the resultant optimization problem?,High level optimization problem,Sinno Jialin Pan,22,Semi-Supervised TCA,High level ob

    22、jectives:,To measure label dependence using Hilbert-Schmidt Independence Criterion (HSIC),To measure the distance between domains using MMD,Sinno Jialin Pan,Blitzer, et al. Learning Bounds for Domain Adaptation. NIPS 2007,m=number of examples d(u_S, u_T) = domain distance 1-d=confidence e=error,23,I

    23、nductive Transfer Learning Model-transfer Approaches Regularization-based Method Evgeiou and Pontil, KDD-04,Assumption: If t tasks are related to each other, then they may share some parameters among individual models. Assume be a hyper-plane for task , where and Encode them into SVMs:,Common part,S

    24、pecific part for individual task,Regularization terms for multiple tasks,Inductive Transfer Learning Structural-transfer Approaches TAMAR Mihalkova et al. AAAI-07,Assumption: If the target domain and source domain are related, then there may be some relationship between domains that are similar, whi

    25、ch can be used for transfer learningInput: Relational data in the source domain and a statistical relational model, Markov Logic Network (MLN), which has been learnt in the source domain. Relational data in the target domain.Output: A new statistical relational model, MLN, in the target domain.Goal:

    26、 To learn a MLN in the target domain more efficiently and effectively.,TAMAR Mihalkova et al. AAAI-07,Two Stages: Predicate Mapping Establish the mapping between predicates in the source and target domain. Once a mapping is established, clauses from the source domain can be translated into the targe

    27、t domain. Revising the Mapped Structure The clause-mapping from the source domain directly may not be completely accurate and may need to be revised, augmented , and re-weighted in order to properly model the target data.,TAMAR Mihalkova et al. AAAI-07,Source domain (academic domain),Target domain (movie domain),Mapping,Revising,


    注意事项

    本文(Introduction to Transfer Learning (Part 2) For 2012 Dragon .ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开